Thursday, July 10, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Agriculture

Drones and Genetics Join Forces to Develop Drought-Resistant Wheat

May 28, 2025
in Agriculture
Reading Time: 4 mins read
0
Roy measuring wheat spectral reflectance
65
SHARES
594
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

In an era marked by unprecedented climate challenges and escalating threats to global food security, a pioneering study out of Israel is redefining how scientists approach the resilience of wheat—one of the world’s most vital staple crops. Researchers at the Hebrew University of Jerusalem’s Faculty of Agriculture, Food and Environment, in collaboration with the Volcani Institute, have successfully leveraged cutting-edge drone technology combined with advanced spectral imaging to unlock the genetic secrets behind wheat’s ability to withstand drought and heat stress. This breakthrough not only accelerates the breeding of climate-resilient wheat varieties but also opens a new frontier in precision phenotyping driven by remote sensing and machine learning.

Harnessing the power of unmanned aerial vehicles (UAVs) equipped with hyperspectral and thermal cameras, the research team conducted extensive field experiments to monitor the physiological and biochemical traits of several hundred wheat genotypes grown under both well-watered and rain-out drought conditions. These drones captured highly detailed images that record variations in leaf thermal emission and light reflectance patterns, which are key indicators of critical plant traits such as stomatal conductance, leaf area index, and chlorophyll content. Such parameters directly relate to the plant’s water-use efficiency and photosynthetic capacity, offering a window into how different wheat lines manage water loss and carbon assimilation under environmental stress.

Traditionally, stomatal conductance — the rate at which CO₂ enters and water vapor exits the leaf through microscopic pores — has been measured by cumbersome, low-throughput instruments such as porometers, which require close contact with plants and considerable manual labor. This has severely limited large-scale genetic studies aimed at understanding plant physiological responses to stress. The revolutionary UAV-based approach developed by Ph.D. candidate Roy Sadeh, under the expert supervision of Dr. Ittai Herrmann and Prof. Zvi Peleg, circumvents these limitations by remotely acquiring thousands of data points rapidly across diverse germplasm collections, all without physically disturbing the plants.

ADVERTISEMENT

Over two full growing seasons, the team’s drone flights at the Pheno-IL research facility involved capturing multiple spectral bands and thermal data, which were then fused into comprehensive phenotypic profiles through sophisticated computational models. Utilizing support vector machine algorithms—a subset of machine learning—the researchers translated raw imagery into quantitative estimates of water-use traits with an impressive 28% increase in accuracy over previous methods. This computational framework represents a significant advancement in transforming raw sensor data into biologically meaningful metrics at scale.

Crucially, integrating these precise phenotypic measurements with high-density wheat genotyping enabled a powerful genome-wide association study (GWAS). This analysis revealed 16 genetic loci significantly correlated with enhanced performance under both optimal and drought stress conditions, marking a pioneering stride in linking remotely sensed physiological traits with underlying genetic architectures. These genetic markers were subsequently validated in a follow-up field trial, cementing their potential utility as targets in wheat breeding programs.

The implications of this study extend far beyond academic curiosity. By enabling a high-throughput, non-invasive, and genetically informed phenotyping pipeline, the research team has effectively unlocked a fast track for breeders to select wheat lines that exhibit superior drought tolerance and carbon assimilation efficiency. This technology-driven breeding paradigm aligns perfectly with global efforts to build climate-resilient food systems, particularly as rising temperatures and erratic precipitation patterns increasingly jeopardize crop yields worldwide.

As Roy Sadeh aptly explains, “Our drone-based method fundamentally changes the pace and scale at which we can identify plants with desirable physiological traits. It empowers us to plant the seeds for future crop varieties that are better prepared to thrive in increasingly dry and hot environments, ultimately securing food production for generations ahead.” This statement underscores a paradigm shift in agricultural science where multidisciplinary innovations—from remote sensing and computational biology to genetics—converge to meet one of humanity’s most pressing challenges.

The research is particularly noteworthy for its utilization of hyperspectral imaging, which captures reflectance data across a broad spectrum of wavelengths invisible to the naked eye. This spectral richness enables decoding of subtle variations in leaf chemistry and structure, such as pigment concentration and canopy architecture, which are intimately tied to photosynthesis and water regulation. Coupled with thermal infrared imaging that detects leaf surface temperatures, the combined imaging modalities offer a multidimensional picture of plant health and stress responses in real time.

Furthermore, the experimental setting—a rain-out shelter at the Pheno-IL facility—allowed the team to precisely simulate drought stress conditions while maintaining uniform environmental controls. This setup ensured the reliability of trait measurements and the relevance of the findings to actual field situations where water scarcity is a prevailing concern. The rigorous validation approach, including the replication of genetic associations in independent trials, enhances confidence in the robustness and applicability of the results.

From a technological perspective, this study exemplifies how the fusion of airborne remote sensing platforms with machine learning analytics is revolutionizing precision agriculture. Support vector machines enabled pattern recognition and complex trait prediction beyond the capabilities of traditional statistical methods, highlighting the immense potential of artificial intelligence to decipher vast biological datasets. As computational power continues to grow and sensor technologies improve, such integrative approaches promise to become standard tools in crop improvement initiatives worldwide.

In summary, the integration of UAV-borne hyperspectral and thermal imaging with genome-wide genetic analyses opens a transformative new pathway in plant science and breeding. This innovative methodology offers a scalable, efficient, and precise means to dissect complex physiological processes like stomatal conductance at the genetic level, accelerating the development of wheat varieties that can endure the multifaceted stresses imposed by climate change. As global agriculture stands at a critical juncture, such forward-thinking research not only advances scientific understanding but also delivers concrete solutions critical for sustaining the food supply in a warming world.

The study, published on April 19, 2025, in the journal Computers and Electronics in Agriculture, represents a landmark achievement in crop phenomics and genetics. Supported by the Israeli Council for Higher Education’s Future Crops for Carbon Farming project, the Dutch Ministry of Foreign Affairs, and the Chief Scientist of the Israeli Ministry of Agriculture and Food Security, this work exemplifies the importance of international cooperation and innovation-driven funding in addressing global agricultural challenges.

Looking ahead, the research team envisions wider applications of UAV-based phenotyping across other crop species and stress conditions. By refining imaging and analytic technologies and expanding genetic databases, the precision breeding revolution sparked by this study promises to equip farmers and breeders with unprecedented tools to combat the uncertainties of climate change. As food security continues to dominate global priorities, this fusion of drone technology, spectroscopy, and genomics may well become one of agriculture’s most powerful weapons.


Subject of Research: Not applicable

Article Title: UAV-borne hyperspectral and thermal imagery integration empowers genetic dissection of wheat stomatal conductance

News Publication Date: 19-Apr-2025

Web References: http://dx.doi.org/10.1016/j.compag.2025.110411

Image Credits: Roy Sadeh, Ittai Herrmann, Prof. Zvi Peleg

Keywords: Agriculture, Crop domestication, Crop irrigation, Crop production, Crop science, Food science, Environmental sciences

Tags: advanced imaging for plant traitsclimate change and food securitydrones in agriculturedrought-resistant wheat developmentgenetic research in crop resilienceHebrew University research initiativesmachine learning in agricultureprecision phenotyping techniquesremote sensing in agriculturesustainable agriculture practicesUAV technology in plant sciencewheat breeding innovations
Share26Tweet16
Previous Post

Study Finds Gradual Tree Mortality Slows Forest Recovery After 2020 Wildfires, PSU Researchers Reveal

Next Post

Lanthanide-Codoped Heterojunctions Enable Downconversion Mechanoluminescence

Related Posts

blank
Agriculture

German NRZ-Authent’s View on Government Knowledge Management

July 5, 2025
Root microbiome dynamics in rice cultivated using fertilized and non-fertilized soil
Agriculture

Beneficial Microbes Identified That Maintain Crop Yields in Fertilizer-Free Fields

July 4, 2025
blank
Agriculture

Climate Change Reduces Milk Yields Despite Cooling Measures for Cows

July 4, 2025
Working with D-vac insect suction sampler
Agriculture

Revealing the Untapped Biodiversity Within Europe’s Villages

July 4, 2025
The plasma column used to kickstart the process for 'green ammonia'
Agriculture

Harnessing Lightning to Produce Ammonia from Thin Air

July 4, 2025
A red squirrel in the treetop of a Douglas fir
Agriculture

Do Red Squirrels and Dormice Coexist Peacefully?

July 3, 2025
Next Post
Downconversion Mechanoluminescence from Lanthanide Codoped Heterojunctions

Lanthanide-Codoped Heterojunctions Enable Downconversion Mechanoluminescence

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27521 shares
    Share 11005 Tweet 6878
  • Bee body mass, pathogens and local climate influence heat tolerance

    639 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    504 shares
    Share 202 Tweet 126
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    308 shares
    Share 123 Tweet 77
  • Probiotics during pregnancy shown to help moms and babies

    256 shares
    Share 102 Tweet 64
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Catalytic Cycle Revolutionizes Crude Hydrogen Handling
  • Unraveling the Chemical Complexity of Plastics
  • Hidden Genetic Interactions Drive Plant Trait Changes
  • Metabolism’s Impact on Enzyme Evolution Over Millennia

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,188 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading