Wednesday, October 29, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Chemistry

Why AI Models for Drug Design Struggle with Physics

October 29, 2025
in Chemistry
Reading Time: 4 mins read
0
65
SHARES
592
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

The quest to understand proteins at an atomic level has long been a cornerstone of biomedical science. Proteins, composed of sequences of amino acids, fold into specific three-dimensional shapes that dictate their function in living organisms. This structural knowledge is crucial not only for basic biological insight but also for the rational design of new therapies—many of which target proteins or use proteins themselves, such as enzymes and antibodies. Despite the importance, experimentally determining protein structures remained a painstaking and resource-intensive challenge until the advent of artificial intelligence (AI)-based predictive models.

In recent years, AI techniques have revolutionized structural biology by accurately predicting protein folds from amino acid sequences. Programs like AlphaFold and RosettaFold have transformed our capacity to visualize proteins in silico. These models leverage deep learning architectures trained on known protein structures to infer the spatial arrangements of new protein sequences. The pathbreaking achievements of these methods were heralded by the 2024 Nobel Prize in Chemistry, underscoring their scientific and medical significance.

Yet, despite this remarkable progress, important questions about the underlying mechanisms by which these AI models operate remain unanswered. The latest iterations of these algorithms extend their capabilities beyond predicting isolated protein structures. They now also model how proteins interact with other molecules—commonly referred to as ligands—such as candidate drug compounds. This co-folding or docking prediction holds immense potential for drug discovery, providing a computational shortcut to designing molecules that fit precisely into protein binding sites.

Professor Markus Lill and his team at the University of Basel’s Department of Pharmaceutical Sciences have recently investigated these promising developments with a critical eye. Their research focuses on designing active pharmaceutical ingredients, and naturally, they wondered if current AI models genuinely comprehend the physical chemistry underlying protein-ligand interactions. Given the relatively small dataset of approximately 100,000 protein-ligand structures available for training, they suspected these AI systems might be leveraging superficial pattern recognition rather than fundamental scientific principles.

In their study, Lill’s group introduced deliberate modifications to hundreds of protein sequences to disrupt or alter the chemistry of known ligand binding sites. These included changing the charge distribution dramatically or completely occluding binding pockets. Surprisingly, despite these profound alterations that would normally abrogate ligand binding in reality, the AI models continued predicting the original protein-ligand complex structures, almost as if the modifications had never occurred.

A similar approach was taken with the ligands themselves. By altering the chemical structures of the ligands to prevent any possible interaction with their target proteins, the researchers found that the AI predictions remained largely unchanged. In over half the cases examined, the models failed to account for these perturbations, predicting stable complexes that physically and chemically should not exist.

This compelling evidence suggests that the AI co-folding models do not yet internalize the physicochemical laws that govern molecular recognition and binding affinity. Instead, they appear to rely heavily on data memorization—pattern matching gleaned from their training sets—without a genuine mechanistic understanding. The models can generate plausible-looking structures but lack the capacity to predict outcomes when confronted with novel or deliberately modified molecules and protein sites.

Compounding this issue is the fact that these AI systems struggle considerably when dealing with proteins unlike any they were trained on. When encountering entirely new folds or ligands with no close analogs in the training data, their predictive accuracy drastically decreases. This limitation is particularly consequential given that novel drug targets often involve previously uncharacterized proteins. The inability of these models to generalize beyond known data restricts their utility for cutting-edge drug discovery.

Professor Lill emphasizes a note of caution for the pharmaceutical community. While AI-derived structural models hold great promise for accelerating drug development, relying solely on these predictions without experimental validation or supplementary computational techniques that incorporate physical chemistry can lead to misleading conclusions. Empirical validation remains indispensable to verify AI-based hypotheses and refine candidate drug molecules accordingly.

Looking forward, the researchers propose an exciting direction: integrating the fundamental principles of physics and chemistry directly into AI frameworks. By embedding these constraints and mechanistic insights into machine learning architectures, future models could generate predictions grounded in molecular reality rather than solely on statistical correlation. Such hybrid approaches may yield more accurate and reliable structures, even for uncharted protein-ligand systems.

This integration could profoundly impact drug discovery pipelines by enabling the targeted design of molecules for proteins currently deemed “undruggable” due to their complex or elusive structures. Moreover, enhanced model reliability could shorten development timelines, reduce costly experimental iterations, and catalyze novel therapeutic strategies. The union of AI sophistication with physical law could mark the next transformative leap in biomedical research.

The current study, published in Nature Communications, serves as a vital wake-up call highlighting both the dazzling potential and existing shortcomings of AI in structural biology and pharmacology. It underscores the imperative for multidisciplinary approaches that combine machine learning prowess with rigorous physicochemical understanding. This synergy will be essential to unlock the full promise of AI-guided drug design and realize truly transformative healthcare innovations.

As the field races forward, nuanced scrutiny such as that by Professor Lill and colleagues will ensure that AI tools evolve not only in accuracy but in conceptual depth. Such progress will empower researchers to wield AI models as dependable scientific instruments rather than black boxes, ultimately expediting the discovery of life-saving medicines.


Subject of Research:
Physics-based evaluation of deep learning models predicting protein-ligand co-folding structures

Article Title:
Investigating whether deep learning models for co-folding learn the physics of protein-ligand interactions

News Publication Date:
6-Oct-2025

Web References:
https://doi.org/10.1038/s41467-025-63947-5


Keywords

Protein Structure Prediction, AI in Drug Discovery, AlphaFold, RosettaFold, Protein-Ligand Interactions, Deep Learning, Structural Biology, Computational Chemistry, Molecular Docking, Physicochemical Properties, Machine Learning Limitations, Pharmaceutical Sciences

Tags: AI in drug designAlphaFold advancementsartificial intelligence in structural biologybiomedical research breakthroughschallenges in AI modelsdeep learning in biologyfuture of protein modelingmechanisms of AI algorithmsprotein structure predictionrational drug design techniquesRosettaFold applicationssignificance of protein folding
Share26Tweet16
Previous Post

AI and Energy Infrastructure Set to Boost US Economy in 2026, Finds IU Kelley Futurecast

Next Post

Revolutionary Artificial Tongue Utilizes Milk to Assess Spiciness in Foods

Related Posts

blank
Chemistry

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025
blank
Chemistry

Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

October 29, 2025
blank
Chemistry

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025
blank
Chemistry

Innovative Carbon Support Enhances Performance and Longevity of Low-Platinum Fuel Cells

October 29, 2025
blank
Chemistry

FF-GFM Supports a More Stable and Safer Renewable Power System

October 29, 2025
blank
Chemistry

Pyridinic-N Doped Phthalocyanine Enables Efficient and Durable CO₂ Electroreduction

October 29, 2025
Next Post
blank

Revolutionary Artificial Tongue Utilizes Milk to Assess Spiciness in Foods

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27573 shares
    Share 11026 Tweet 6891
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    982 shares
    Share 393 Tweet 246
  • Bee body mass, pathogens and local climate influence heat tolerance

    649 shares
    Share 260 Tweet 162
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    517 shares
    Share 207 Tweet 129
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    486 shares
    Share 194 Tweet 122
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Improving Pediatric Iodinated Contrast Delivery Worldwide
  • Tracing Fatty Acids in Karst River and Groundwater
  • Neural Networks: The Pathway to Artificial General Intelligence
  • Mobile Devices Boost Stigmatized Patients’ Online Engagement

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,189 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading