Tuesday, August 19, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Technology and Engineering

Turns out I’m not real: Detecting AI-generated videos

June 26, 2024
in Technology and Engineering
Reading Time: 4 mins read
0
DIffusion-generated VIdeo Detector (DIVID)
67
SHARES
605
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Earlier this year, an employee at a multinational corporation sent fraudsters $25 million. The instructions to transfer the money came — the employee thought — straight from the company’s CFO. In reality, the criminals had used an AI program to generate realistic videos of the CFO and several other colleagues in an elaborate scheme.

DIffusion-generated VIdeo Detector (DIVID)

Credit: Software Systems Laboratory/Columbia Engineering

Earlier this year, an employee at a multinational corporation sent fraudsters $25 million. The instructions to transfer the money came — the employee thought — straight from the company’s CFO. In reality, the criminals had used an AI program to generate realistic videos of the CFO and several other colleagues in an elaborate scheme.

Videos created by AI have become so realistic that humans (and existing detection systems) struggle to distinguish between real and fake videos. To address this problem, Columbia Engineering researchers, led by Computer Science Professor Junfeng Yang, have developed a new tool to detect AI-generated video called DIVID, short for DIffusion-generated VIdeo Detector. DIVID expands on work the team released earlier this year–Raidar, which detects AI-generated text by analyzing the text itself, without needing to access the inner workings of large language models.

DIVID detects new generation of generative AI videos

DIVID improves upon earlier existing methods that detect generative videos that effectively identify videos generated by older AI models like generative adversarial networks (GAN). A GAN is an AI system with two neural networks: one creates fake data, and another evaluates it to distinguish between fake and real. Through continuous feedback, both networks improve, resulting in a highly realistic synthetic video. Current AI detection tools look for telltale signs like unusual pixel arrangements, unnatural movements, or inconsistencies between frames that wouldn’t typically occur in real videos. 

The new generation of generative AI video tools like Sora by OpenAI, Runway Gen-2, and Pika uses a diffusion model to create videos. A diffusion model is an AI technique that creates images and videos by gradually turning random noise into a clear, realistic picture. For videos, it refines each frame individually while ensuring smooth transitions, producing high-quality, lifelike results. This increasing sophistication of AI-generated videos poses a significant challenge in detecting their authenticity. 

Yang’s group used a technique called DIRE (DIffusion Reconstruction Error) to detect diffusion-generated images. DIRE is a method that measures the difference between an input image and the corresponding output image reconstructed by a pretrained diffusion model.

Expanding Raidar’s AI-generated texts to video

Yang, who co-directs the Software Systems Lab, has been exploring how to detect AI-generated text and videos. Earlier this year, with the release of Raidar, Yang and collaborators are enabling a way to detect AI-generated text by analyzing the text itself, without needing to access the inner workings of large language models like chatGPT-4, Gemini, or Llama. Raidar uses a language model to rephrase or alter a given text and then measures how many edits the system makes to the given text. Many edits mean humans likely wrote the text, while fewer modifications mean the text is likely machine-generated.

“The insight in Raidar – that the output from an AI is often considered high-quality by another AI so it will make fewer edits – is really powerful and extends beyond just text,” said Yang. “Given that AI-generated video is becoming more and more realistic, we wanted to take the Raidar insight and create a tool that can detect AI-generated videos accurately.”

The researchers used the same concept to develop DIVID. This new generative video detection method can identify video generated by diffusion models. The research paper, which includes open-sourced code and datasets, was presented at the Computer Vision and Pattern Recognition Conference (CVPR) in Seattle on June 18, 2024.

How DIVID works

DIVID works by reconstructing a video and analyzing the newly reconstructed video against the original video.It uses DIRE values to detect diffusion-generated videos since the method operates on the hypothesis that reconstructed images generated by diffusion models should closely resemble each other because they are sampled from the diffusion process distribution. If there are significant alterations, the original video is likely human-generated. If not, it is likely AI-generated. 

The framework is based on the idea that AI generation tools create content based on the statistical distribution of large data sets, resulting in more “statistical means” content such as pixel intensity distributions, texture patterns, and noise characteristics in video frames, subtle inconsistencies or artifacts that change unnaturally between frames, or unusual patterns that are more likely in diffusion-generated videos than in real ones.

In contrast, human video creations exhibit individuality and deviate from the statistical norm. DIVID achieved a groundbreaking detection accuracy of up to 93.7% for videos from their benchmark dataset of diffusion-generated videos from Stable Vision Diffusion, Sora, Pika, and Gen-2. 

For now, DIVID is a command line tool that analyzes a video and outputs whether it is AI or human-generated and can only be used by developers. The researchers note that their technology has the potential to be integrated as a plugin to Zoom to detect deepfake calls in real time. The team is also considering developing a website or browser plugin to make DIVID accessible to ordinary users.

“Our framework is a significant leap forward in detecting AI-generated content,” said Yun-Yun Tsai, one of the authors of the paper and a PhD student of Yang. “There are way too many scammers who use AI-generated video, and it’s critical to stop them and protect society.”

What’s next?

The researchers are now working to improve the framework of DIVID so it can handle different kinds of synthetic videos from open-source video generation tools. They are also using DIVID to collect videos for the DIVID dataset. 



DOI

10.48550/arXiv.2406.09601

Article Title

Turns Out I’m Not Real: Towards Robust Detection of AI-Generated Videos

Article Publication Date

13-Jun-2024

COI Statement

The authors declare no financial or other conflicts of interest.

Share27Tweet17
Previous Post

Pathologists awarded grant from American Society of Hematology

Next Post

Global consensus for sarcopenia

Related Posts

blank
Technology and Engineering

Enhanced Carbon-Doped Cement Electrode for Energy Storage

August 19, 2025
blank
Technology and Engineering

Urine to Gold: Innovative Prototype Extracts Valuable Resources from Human Waste

August 19, 2025
blank
Technology and Engineering

Exploring the Ancient Chaetognath: A Journey Through the Evolution of Life

August 19, 2025
blank
Technology and Engineering

Nanorod Phosphides Enhance Sodium-Ion Battery Anode Performance

August 19, 2025
blank
Technology and Engineering

Revolutionary Shape-Shifting Antenna Enhances Versatility in Sensing and Communication

August 19, 2025
blank
Technology and Engineering

CoSbS-G Composite Enhances Sodium-Ion Battery Anodes

August 18, 2025
Next Post
Aging

Global consensus for sarcopenia

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27535 shares
    Share 11011 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    949 shares
    Share 380 Tweet 237
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Bovine Trypanosoma Infection Risks in Egyptian Cattle
  • Enhanced Carbon-Doped Cement Electrode for Energy Storage
  • Unveiling Tulip Sign in Prenatal Hypospadias Detection
  • Urine to Gold: Innovative Prototype Extracts Valuable Resources from Human Waste

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading