Friday, May 16, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Climate

New computer algorithm supercharges climate models and could lead to better predictions of future climate change

May 1, 2024
in Climate
Reading Time: 5 mins read
0
New computer algorithm supercharges climate models and could lead to better predictions of future climate change
65
SHARES
595
VIEWS
Share on FacebookShare on Twitter

Earth System Models – complex computer models which describe Earth processes and how they interact – are critical for predicting future climate change. By simulating the response of our land, oceans and atmosphere to manmade greenhouse gas emissions, these models form the foundation for predictions of future extreme weather and climate event scenarios, including those issued by the UN Intergovernmental Panel on Climate Change (IPCC).

Earth System Models – complex computer models which describe Earth processes and how they interact – are critical for predicting future climate change. By simulating the response of our land, oceans and atmosphere to manmade greenhouse gas emissions, these models form the foundation for predictions of future extreme weather and climate event scenarios, including those issued by the UN Intergovernmental Panel on Climate Change (IPCC).

However, climate modellers have long faced a major problem. Because Earth System Models integrate many complicated processes, they cannot immediately run a simulation; they must first ensure that it has reached a stable equilibrium representative of real-world conditions before the industrial revolution. Without this initial settling period – referred to as the “spin-up” phase – the model can “drift”, simulating changes that may be erroneously attributed to manmade factors.

Unfortunately, this process is extremely slow as it requires running the model for many thousands of model years which, for IPCC simulations, can take as much as two years on some of the world’s most powerful supercomputers.

However, a study published today in Science Advances by a University of Oxford scientist funded by the Agile Initiative describes a new computer algorithm which can be applied to Earth System Models to drastically reduce spin-up time. During tests on models used in IPCC simulations, the algorithm was on average 10 times faster at spinning up the model than currently-used approaches, reducing the time taken to achieve equilibrium from many months to under a week.

Study author Samar Khatiwala, Professor of Earth Sciences at the University of Oxford’s Department of Earth Sciences, who devised the algorithm, said: ‘Minimising model drift at a much lower cost in time and energy is obviously critical for climate change simulations, but perhaps the greatest value of this research may ultimately be to policy makers who need to know how reliable climate projections are.’

Currently, the lengthy spin-up time of many IPCC models prevents climate researchers from running their model at a higher resolution and defining uncertainty through carrying out repeat simulations. By drastically reducing the spin-up time, the new algorithm will enable researchers to investigate how subtle changes to the model parameters can alter the output – which is critical for defining the uncertainty of future emission scenarios.

Professor Khatiwala’s new algorithm employs a mathematical approach known as sequence acceleration, which has its roots with the famous mathematician Euler. In the 1960s this idea was applied by D. G. Anderson to speed-up the solution of Schrödinger’s equation, which predicts how matter behaves at the microscopic level. So important is this problem that more than half the world’s supercomputing power is currently devoted to solving it, and ‘Anderson Acceleration’, as it is now known, is one of the most commonly used algorithms employed for it.

Professor Khatiwala realised that Anderson Acceleration might also be able to reduce model spin-up time since both problems are of an iterative nature: an output is generated and then fed back into the model many times over. By retaining previous outputs and combining them into a single input using Anderson’s scheme, the final solution is achieved much more quickly.

Not only does this make the spin-up process much faster and less computationally expensive, but the concept can be applied to the huge variety of different models that are used to investigate, and inform policy on, issues ranging from ocean acidification to biodiversity loss. With research groups around the world beginning to spin-up their models for the next IPCC report, due in 2029, Professor Khatiwala is working with a number of them, including the UK Met Office, to trial his approach and software in their models.

Professor Helene Hewitt OBE, Co-chair for the Coupled Model Intercomparison Project (CMIP) Panel, which will inform the next IPCC report, commented: ‘Policymakers rely on climate projections to inform negotiations as the world tries to meet the Paris Agreement. This work is a step towards reducing the time it takes to produce those critical climate projections.’

Professor Colin Jones Head of the NERC/Met Office sponsored UK Earth system modelling, commented on the findings: ‘Spin-up has always been prohibitively expensive in terms of computational cost and time. The new approaches developed by Professor Khatiwala have the promise to break this logjam and deliver a quantum leap in the efficiency of spinning up such complex models and, as a consequence, greatly increase our ability to deliver timely, robust estimates of global climate change.’

Notes to editors:

For media enquiries and interview requests, contact Dr Charlie Rex, Department of Earth Sciences, University of Oxford: charlie.rex@earth.ox.ac.uk

The study ‘Efficient spin-up of Earth System Models using sequence acceleration’ will be published in the journal Science Advances at 19:00 BST / 14:00 ET Wednesday 1 May, 2024 at  To view a copy of the study before this, under embargo, contact the Science Advances editorial team vancepak@aaas.org or access the Science Advances press package, VancePak, at

This research was conducted as part of the Agile Initiative at the Oxford Martin School, with funding from the Natural Environment Research Council (NERC).

About the University of Oxford

Oxford University has been placed number 1 in the Times Higher Education World University Rankings for the eighth year running, and ​number 3 in the QS World Rankings 2024. At the heart of this success are the twin-pillars of our ground-breaking research and innovation and our distinctive educational offer.

Oxford is world-famous for research and teaching excellence and home to some of the most talented people from across the globe. Our work helps the lives of millions, solving real-world problems through a huge network of partnerships and collaborations. The breadth and interdisciplinary nature of our research alongside our personalised approach to teaching sparks imaginative and inventive insights and solutions.

Through its research commercialisation arm, Oxford University Innovation, Oxford is the highest university patent filer in the UK and is ranked first in the UK for university spinouts, having created more than 300 new companies since 1988. Over a third of these companies have been created in the past five years. The university is a catalyst for prosperity in Oxfordshire and the United Kingdom, contributing £15.7 billion to the UK economy in 2018/19, and supports more than 28,000 full time jobs.



Journal

Science Advances

DOI

10.1126/sciadv.adn2839

Article Title

Efficient spin-up of Earth System Models using sequence acceleration

Article Publication Date

1-May-2024

Share26Tweet16
Previous Post

Simulations of agriculture on Mars using pea, carrot and tomato plants suggest that intercropping, growing different crops mixed together, could boost yields in certain conditions

Next Post

Time-restricted eating and high-intensity exercise might work together to improve health

Related Posts

blank
Climate

Warming Tolerance Shifts Impact Zebrafish Physiology, Life

May 14, 2025
blank
Climate

Forest Impact Risks at 1.5°C With/Without Overshoot

May 12, 2025
blank
Climate

Bridging Adaptation Gaps via Consistent Planning

May 12, 2025
blank
Climate

Rewrite High-income groups disproportionately contribute to climate extremes worldwide as a headline for a science magazine post, using no more than 8 words

May 7, 2025
blank
Climate

Why Individualized Cost–Benefit Analysis Fails in Demand Mitigation

May 2, 2025
blank
Climate

Why Individual Cost–Benefit Analysis Fails Demand Mitigation

May 2, 2025
Next Post
Unlocking the power of synergy: High-intensity functional training and early time-restricted eating for transformative changes in body composition and cardiometabolic health in inactive women with obesity

Time-restricted eating and high-intensity exercise might work together to improve health

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27495 shares
    Share 10995 Tweet 6872
  • Bee body mass, pathogens and local climate influence heat tolerance

    636 shares
    Share 254 Tweet 159
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    498 shares
    Share 199 Tweet 125
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    304 shares
    Share 122 Tweet 76
  • Probiotics during pregnancy shown to help moms and babies

    252 shares
    Share 101 Tweet 63
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

Recent Posts

  • Mucin-like Protein Drives Crimean-Congo Fever Virulence
  • Gene Expression Changes in Early Childhood and Type 1 Diabetes Risk
  • ICGR15 Predicts Liver Failure After Hemi-Hepatectomy
  • Sustainability Drivers and Barriers in Brazilian Denim Innovation

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,861 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine