For most human proteins, there are no small molecules known to bind them chemically (so called “ligands”). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.
Credit: © Bubu Dujmic/CeMM
For most human proteins, there are no small molecules known to bind them chemically (so called “ligands”). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.
The majority of all drugs are small molecules that influence the activity of proteins. These small molecules – if well understood – are also invaluable tools to characterize the behavior of proteins and to do basic biological research. Given these essential roles, it is surprising that for more than 80 percent of all proteins, no small-molecule binders have been identified so far. This hinders the development of novel drugs and therapeutic strategies, but likewise prevents novel biological insights into health and disease.
To close this gap, researchers at CeMM in collaboration with Pfizer have expanded and scaled an experimental platform that enables them to measure how hundreds of small molecules with various chemical structures interact with all expressed proteins in living cells. This yielded a rich catalog of tens of thousands of ligand-protein interactions than can now be further optimized to represent starting points for further therapeutic development. In their study, the team led by CeMM PI Georg Winter has exemplified this by developing small-molecule binders of cellular transporters, components of the cellular degradation machinery and to understudied proteins involved in cellular signal transduction. Moreover, taking advantage of the large dataset, machine learning and artificial intelligence models were developed that can predict how additional small molecules interact with proteins expressed in living human cells.
“We were amazed to see how artificial intelligence and machine learning can elevate our understanding of small-molecule behavior in human cells. We hope that our catalog of small molecule-protein interactions and the associated artificial intelligence models can now provide a shortcut in drug discovery approaches”, says Georg Winter. To maximize the potential impact and usefulness for the scientific community, all data and models are made freely available through a web application. “This was an outstanding partnership between industry and academia. We are delighted to present the results which were obtained through three years of close collaboration and teamwork between the groups. It’s been a great project”, says Dr Patrick Verhoest, Vice President and Head of Medicine Design at Pfizer.
###
The Study “Large-scale chemoproteomics expedites drug discovery and predicts ligand behavior in cells” was published in Science on April 26, 2024.
DOI: 10.1126/science.adk5864
Authors: Fabian Offensperger, Gary Tin, Miquel Duran-Frigola, Elisa Hahn, Sarah Dobner, Christopher W am Ende, Joseph W Strohbach, Andrea Rukavina, Vincenth Brennsteiner, Kevin Ogilvie, Nara Marella, Katharina Kladnik, Rodolfo Ciuffa, Jaimeen D Majmudar, S Denise Field, Ariel Bensimon, Luca Ferrari, Evandro Ferrada, Amanda Ng, Zhechun Zhang, Gianluca Degliesposti, Andras Boeszoermenyi, Sascha Martens, Robert Stanton, André Mueller, J. Thomas Hannich, David Hepworth, Giulio Superti-Furga, Stefan Kubicek, Monica Schenone, Georg E. Winter
Funding: This study was supported by Pfizer, the Vienna Science and Technology Fund (WWTF) and the Austrian Science Fund (FWF).
The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences is an international, independent and interdisciplinary research institution for molecular medicine under the scientific direction of Giulio Superti-Furga. CeMM is oriented towards medical needs and integrates basic research and clinical expertise to develop innovative diagnostic and therapeutic approaches for precision medicine. Research focuses on cancer, inflammation, metabolic and immune disorders, and rare diseases. The Institute’s research building is located on the campus of the Medical University and the Vienna General Hospital.
For further information please contact:
Stefan Bernhardt
PR & Communications Manager
Phone +43-1/40160-70 056
Fax +43-1/40160-970 000
sbernhardt@cemm.at
CeMM
Research Center for Molecular Medicine
of the Austrian Academy of Sciences
Lazarettgasse 14, AKH BT 25.3
1090 Vienna, Austria
Journal
Science
Method of Research
Experimental study
Subject of Research
Cells
Article Title
Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells
Article Publication Date
26-Apr-2024
Discover more from Science
Subscribe to get the latest posts sent to your email.