Saturday, February 7, 2026
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Technology and Engineering

Virtual-dimension increase of EMG signals for prosthetic hands gesture recognition

April 18, 2024
in Technology and Engineering
Reading Time: 3 mins read
0
66
SHARES
601
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

The electromyographic(EMG) signal is the bioelectrical current generated during muscle contraction. It can be transmitted as an input signal to an intelligent bionic prosthetic hand to control hand movements. By increasing the number of signal acquisition channels, richer information about the intention of the action can be captured, thus improving the success rate of the recognition of the intention of the action. However, it is not better to have more acquisition channels. As the number of channels increases, the hardware system becomes more complex, and the effect of improving the accuracy of gesture recognition gradually decreases, resulting in the control effect reaching a bottleneck.

The electromyographic(EMG) signal is the bioelectrical current generated during muscle contraction. It can be transmitted as an input signal to an intelligent bionic prosthetic hand to control hand movements. By increasing the number of signal acquisition channels, richer information about the intention of the action can be captured, thus improving the success rate of the recognition of the intention of the action. However, it is not better to have more acquisition channels. As the number of channels increases, the hardware system becomes more complex, and the effect of improving the accuracy of gesture recognition gradually decreases, resulting in the control effect reaching a bottleneck.

To address these issues, a team of researchers from Beijing Institute of Technology proposed a method to improve gesture recognition accuracy by virtually increasing the number of EMG signal channels.

The team published their findings in Cyborg and Bionic Systems on Jan 29, 2024.

This method extracts amplitude features from EMG signals to represent the contraction intensity of a muscle over time. The absolute values of the intensity differences between channels are then calculated. These difference values are merged with the original data to form new samples with more columns, simulating an actual increase in the dimensionality of the data. This makes use of the implicit coordination information between muscles during movement. Even if the number of physical acquisition channels is limited, this approach improves recognition accuracy because it does not rely solely on the amount of data directly acquired by the sensor.

To validate their method, the authors compared the accuracy of gesture intent recognition before and after adding virtual dimensions. The accuracy of gesture recognition using EMG signals after the addition of virtual dimensions was improved compared to unprocessed EMG signals. In addition, the greater the number of EMG signal acquisition channels and the richer the EMG signals obtained, the higher the success rate of gesture recognition.

In addition, based on the filtered feature selection approach, the research team introduced a separability metric derived from the dispersion and correlation of the feature set (separability of feature vectors SFV). The SFV value can predict the classification effect before classification is performed and validate the effectiveness of the virtual dimensionality increase strategy in terms of the change in the separability of the feature set.

Authors of the paper include Yuxuan Wang, Ye Tian, Jinying Zhu, Haotian She, Yinlai Jiang, Zhihong Jiang, and Hiroshi Yokoi

The paper, “A Hand Gesture Recognition Strategy Based on Virtual-Dimension Increase of EMG” was published in the journal Cyborg and Bionic Systems on Jan 29, 2024, at DOI:

Reference

Authors: Yuxuan Wang 1, Ye Tian 1, Jinying Zhu 1, Haotian She 1, Yinlai Jiang 2, Zhihong Jiang 1, and Hiroshi Yokoi 2

Title of original paper: A Hand Gesture Recognition Strategy Based on Virtual-Dimension Increase of EMG

Journal: Cyborg and Bionic Systems

DOI: 10.34133/cbsystems.0066

 

Affiliations:

1School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

2Faculty of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.



Journal

Cyborg and Bionic Systems

DOI

10.34133/cbsystems.0066

Share26Tweet17
Previous Post

Marine plankton behaviour could predict future marine extinctions, study finds

Next Post

Novel robotic training program reduces physician errors placing central lines

Related Posts

Technology and Engineering

Comprehensive Global Analysis: Merging Finance, Technology, and Governance Essential for Just Climate Action

February 7, 2026
blank
Technology and Engineering

Revolutionary Genetic Technology Emerges to Combat Antibiotic Resistance

February 6, 2026
blank
Technology and Engineering

Nanophotonic Two-Color Solitons Enable Two-Cycle Pulses

February 6, 2026
blank
Technology and Engineering

Insilico Medicine Welcomes Dr. Halle Zhang as New Vice President of Clinical Development for Oncology

February 6, 2026
blank
Technology and Engineering

Novel Gene Editing Technique Targets Tumors Overloaded with Oncogenes

February 6, 2026
blank
Technology and Engineering

New Study Uncovers Microscopic Sources of Surface Noise Affecting Diamond Quantum Sensors

February 6, 2026
Next Post
Robotic simulation training program

Novel robotic training program reduces physician errors placing central lines

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27610 shares
    Share 11040 Tweet 6900
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    1017 shares
    Share 407 Tweet 254
  • Bee body mass, pathogens and local climate influence heat tolerance

    662 shares
    Share 265 Tweet 166
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    529 shares
    Share 212 Tweet 132
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    515 shares
    Share 206 Tweet 129
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Diverse Sustainability Trends in Takaful Insurance
  • Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND
  • Abyssal Hydrothermal Alteration Sparks Prebiotic Molecules
  • Florida Cane Toad: Complex Spread and Selective Evolution

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Biotechnology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Editorial Policy
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,190 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading