Saturday, August 16, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Chemistry

Think simpler, flow faster

September 3, 2024
in Chemistry
Reading Time: 3 mins read
0
Solutions generated by model B3 tested with circular obstacles
65
SHARES
593
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Analyzing and simulating fluid flow is a challenging mathematical problem that impacts various scenarios, including video game engines, ocean current modeling and hurricane forecasting. The core of this challenge lies in solving the Navier–Stokes equations, a set of classical equations that describe fluid dynamics. Recently, deep learning has emerged as a powerful tool to accelerate equation solving. Using this technique, a team designed a novel approach that can provide accurate solutions 1,000 times faster than traditional equation solvers. The team’s study was published June 26 in Intelligent Computing, a Science Partner Journal.

Solutions generated by model B3 tested with circular obstacles

Credit: SHEN WANG ET AL.

Analyzing and simulating fluid flow is a challenging mathematical problem that impacts various scenarios, including video game engines, ocean current modeling and hurricane forecasting. The core of this challenge lies in solving the Navier–Stokes equations, a set of classical equations that describe fluid dynamics. Recently, deep learning has emerged as a powerful tool to accelerate equation solving. Using this technique, a team designed a novel approach that can provide accurate solutions 1,000 times faster than traditional equation solvers. The team’s study was published June 26 in Intelligent Computing, a Science Partner Journal.

The team tested their approach on a three-variable lid-driven cavity flow problem in a large 512 × 512 computational domain. In the experiment, conducted on a consumer desktop system with an Intel Core i5 8400 processor, their method achieved inference latencies of just 7 milliseconds per input, a great improvement compared to the 10 seconds required by traditional finite difference methods.

Apart from being swift, the new deep learning approach is also low-cost and highly adaptable, thus could be used to make real-time predictions on everyday digital devices. It integrates the efficiency of supervised learning techniques with the necessary physics of traditional methods.

Although other supervised learning models can rapidly simulate and predict the closest numerical solutions to the Navier–Stokes equations, their performance is constrained by the labeled training data, which could lack the size, diversity and fundamental physical information needed to solve the equations.

To work around data-driven limitations and reduce computation load, the team trained a series of models stage by stage in a weakly supervised way. Initially, only a minimal amount of pre-computed “warm-up” data was used to facilitate model initialization. This allowed the base models to quickly adapt to the fundamental dynamics of fluid flow before progressing to more complex scenarios and eliminated the need for extensive labeled datasets.

All models are based on a convolutional U-Net architecture, which the team customized for complex fluid dynamics problems. As a modified autoencoder, the U-Net consists of an encoder that compresses the input data into compact representations, and a decoder that reconstructs this data back into high-resolution outputs. The encoder and decoder are connected through skip connections, which help preserve important features and improve the quality of the outputs.

To ensure the outputs adhere to the necessary constraints, the team also developed a custom loss function that incorporates both data-driven and physics-informed components.

Like traditional methods, the team’s approach uses a 2D matrix to represent the computational domain, which sets the determining constraints of the fluid dynamics problems. The constraints include geometric constraints such as the size and shape of the domain, physical constraints such as the physical features of the flow and applicable physical laws, and boundary conditions that define the problems mathematically. This format allows unknown variables to be directly integrated into the constraints as part of the input data so that the trained models can handle various boundary conditions and geometries, including unseen complicated cases.



Journal

Intelligent Computing

DOI

10.34133/icomputing.0093

Article Title

Stacked Deep Learning Models for Fast Approximations of Steady-State Navier–Stokes Equations for Low Re Flow

Article Publication Date

26-Jun-2024

Share26Tweet16
Previous Post

Study: racial and ethnic designation inaccuracies in children’s medical records may impede equity efforts

Next Post

Machine learning technique predicts likely accounting fraud across supply chains

Related Posts

blank
Chemistry

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
blank
Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025
blank
Chemistry

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025
blank
Chemistry

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
blank
Chemistry

High-Throughput Discovery of Fluoroprobes for Amyloid

August 15, 2025
blank
Chemistry

Ocular Side Effects Associated with Semaglutide: New Insights

August 15, 2025
Next Post
Multi-relational graph representation learning for financial statement fraud detection

Machine learning technique predicts likely accounting fraud across supply chains

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27534 shares
    Share 11010 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    948 shares
    Share 379 Tweet 237
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Saudi Archaeology and Predicting Pro-Environmental Intentions
  • Breakthrough Cancer Drug Eradicates Aggressive Tumors in Clinical Trial
  • Study Reveals Thousands of Children in Mental Health Crisis Face Prolonged Stays in Hospital Emergency Rooms
  • Advancing Precision Cancer Therapy Through Tumor Electrophysiology Insights

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading