Sunday, August 31, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Cancer

Revolutionizing Oral Health: Deep Learning Enhances Diagnosis and Prognosis of Potentially Malignant Disorders

February 26, 2025
in Cancer
Reading Time: 6 mins read
0
Deep Learning in the Diagnosis and Prognosis of Oral Potentially Malignant Disorders
65
SHARES
594
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
Deep Learning in the Diagnosis and Prognosis of Oral Potentially Malignant Disorders

image: 

Oral potentially malignant disorders (OPMDs), characterized by a wide variety of types and diverse clinical manifestations, have always been difficult to diagnose and differentiate. All of them carry a risk of malignant transformation. In addition to pathological examination, which remains the gold standard, various auxiliary diagnostic tests are used in clinical practice. Deep learning, a branch of artificial intelligence, has been applied to medical image analysis. Among deep learning techniques, convolutional neural networks are commonly used for image segmentation, detection, classification, and computer-aided diagnosis. We reviewed several image analysis methods based on deep learning neural networks for the diagnosis and prognosis of OPMDs, including photographic images, autofluorescence images, exfoliative cytology images, histopathological images, and optical coherence tomography images. Additionally, we assessed the current limitations and challenges in applying deep learning to the diagnosis of OPMDs.


view more 

Credit: Gang Zhou, Xin-Lei Li

Oral cancer remains a serious global health concern due to its high morbidity and mortality rates, primarily caused by late-stage diagnosis. The presence of oral potentially malignant disorders (OPMDs) provides an opportunity for early intervention, as these lesions precede the development of oral squamous cell carcinoma. However, the accurate detection and classification of OPMDs remain challenging due to their diverse clinical presentations. Conventional diagnostic methods, including visual examination and histopathological analysis, have limitations such as subjectivity, invasiveness, and high dependency on expert interpretation. In recent years, artificial intelligence (AI) and deep learning (DL) have emerged as promising tools in medical imaging, offering automated, objective, and efficient diagnostic capabilities.

Deep Learning in the Diagnosis of OPMDs

Various deep learning models, particularly convolutional neural networks (CNNs), have been applied to different imaging modalities to improve the diagnosis of OPMDs. These models have demonstrated expert-level accuracy in detecting and classifying OPMDs using clinical photographic images, autofluorescence images, exfoliative cytology, histopathology, and optical coherence tomography (OCT) images.

  • Clinical Photographic Images: Deep learning algorithms such as DenseNet-169, ResNet-101, and EfficientNet-b4 have been employed to analyze clinical photographs of oral lesions. Studies indicate that these models can distinguish OPMDs from benign lesions and oral cancer with sensitivity and specificity comparable to expert clinicians. The use of smartphone-based imaging and DL models is particularly promising for resource-limited settings.
  • Autofluorescence Imaging: Autofluorescence imaging, which highlights biochemical changes in oral tissues, has been enhanced by AI-based analysis. Deep learning models trained on autofluorescence spectra can differentiate between normal mucosa, OPMDs, and malignant lesions, improving diagnostic accuracy.
  • Exfoliative Cytology: AI-assisted analysis of exfoliative cytology images has been explored as a noninvasive and cost-effective diagnostic tool. CNN-based models have shown high sensitivity and specificity in identifying cytological abnormalities associated with malignant transformation.
  • Histopathological Analysis: Pathological examination remains the gold standard for diagnosing OPMDs. Deep learning algorithms can automate the identification of dysplastic features in histological images, improving consistency and reducing interobserver variability. Segmentation models such as Mask R-CNN have been particularly effective in identifying nuclear changes indicative of malignant potential.
  • Optical Coherence Tomography (OCT): OCT provides high-resolution, real-time imaging of oral tissues, facilitating early detection of dysplastic and malignant changes. AI-based models have been trained to analyze OCT images, achieving diagnostic accuracy comparable to pathologists.

Deep Learning in Prognostic Prediction of OPMDs

Beyond diagnosis, AI models are being utilized to predict the likelihood of malignant transformation in OPMDs. Machine learning techniques, including random forest classifiers and survival models such as DeepSurv, have been used to integrate clinical, histopathological, and imaging data to assess cancer risk. These models provide individualized risk assessments, aiding in clinical decision-making and patient management.

Challenges and Future Directions

Despite its potential, the application of deep learning in OPMD diagnosis and prognosis faces several challenges. These include the need for large, standardized image datasets, variability in image quality, and algorithm limitations such as overfitting and interpretability issues. Future research should focus on developing multimodal AI systems that integrate imaging, molecular, and clinical data for more accurate and personalized diagnosis and prognosis of OPMDs.

Conclusion

Deep learning has demonstrated significant potential in improving the diagnosis and prognosis of OPMDs through various imaging modalities. AI-driven approaches offer a noninvasive, cost-effective, and objective means to enhance early detection, ultimately improving patient outcomes. As AI technology continues to advance, its integration into clinical workflows may revolutionize the management of OPMDs and oral cancer prevention.

 

Full text

 

The study was recently published in the Cancer Screening and Prevention.

Cancer Screening and Prevention (CSP) publishes high-quality research and review articles related to cancer screening and prevention. It aims to provide a platform for studies that develop innovative and creative strategies and precise models for screening, early detection, and prevention of various cancers. Studies on the integration of precision cancer prevention multiomics where cancer screening, early detection and prevention regimens can precisely reflect the risk of cancer from dissected genomic and environmental parameters are particularly welcome.

 

Follow us on X: @xiahepublishing

Follow us on LinkedIn:  Xia & He Publishing Inc.



Journal

Cancer Screening and Prevention

DOI

10.14218/CSP.2024.00025

Article Title

Deep Learning in the Diagnosis and Prognosis of Oral Potentially Malignant Disorders

Article Publication Date

23-Dec-2024

Media Contact

Shelly Zhang

Xia & He Publishing Inc.

service@xiahepublishing.com

Journal
Cancer Screening and Prevention
DOI
10.14218/CSP.2024.00025

Journal

Cancer Screening and Prevention

DOI

10.14218/CSP.2024.00025

Article Title

Deep Learning in the Diagnosis and Prognosis of Oral Potentially Malignant Disorders

Article Publication Date

23-Dec-2024

Keywords


  • /Applied sciences and engineering/Engineering/Robotics/Artificial intelligence/Machine learning/Deep learning

  • /Applied sciences and engineering/Information science/Informatics/Bioinformatics/Neuroinformatics/Neural modeling

  • /Applied sciences and engineering/Information science/Information processing/Data analysis/Image analysis

  • /Life sciences/Neuroscience/Neuroimaging

  • /Health and medicine/Medical specialties/Pathology/Disease prevention

  • /Health and medicine/Medical specialties/Oncology/Cancer screening

  • /Applied sciences and engineering/Engineering/Robotics/Artificial intelligence/Artificial neural networks

bu içeriği en az 2000 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 12 paragraf ve her bir paragrafta da en az 50 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer yoksa bilgisi ilgili kısmı yazma.:
Subject of Research:
Article Title:
News Publication Date:
Web References:
References:
Image Credits:

Keywords

Share26Tweet16
Previous Post

Revolutionary Molten Metal Catalysts Enable Sustainable Hydrogen Production Without CO2 Emissions

Next Post

Expanded Program Enhances Research Opportunities for Students

Related Posts

blank
Cancer

Juglone’s Autophagy Targets in Bladder Cancer Treatment

August 30, 2025
blank
Cancer

L-arginine vs. L-glutamine: A Mucositis Treatment Trial

August 30, 2025
blank
Cancer

Cancer Treatment’s Impact on Breast Cancer Survivors

August 30, 2025
blank
Cancer

Revisiting Conversion Therapy for Pancreatic Cancer Metastasis

August 30, 2025
blank
Cancer

New Oncology Network Advances GI Cancer Care

August 30, 2025
blank
Cancer

Gastrectomy Methods Compared After Chemotherapy

August 30, 2025
Next Post
Philip Wilson and Khushi Piparava at the American Institute of Aeronautics and Astronautics conference in Stillwater, Okla.

Expanded Program Enhances Research Opportunities for Students

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27542 shares
    Share 11014 Tweet 6884
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    955 shares
    Share 382 Tweet 239
  • Bee body mass, pathogens and local climate influence heat tolerance

    642 shares
    Share 257 Tweet 161
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    509 shares
    Share 204 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    313 shares
    Share 125 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Remnant Cholesterol Linked to Diabetes Risk Factors
  • Assessing Employer-Preferred Skills for Biomedical Engineers
  • School Mental Health Visits and Medications During COVID-19
  • Social Behaviors Shield College Students from Alcohol Risks

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,182 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading