Monday, August 11, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Technology and Engineering

Research spotlight: AI enabled body composition analysis predicts outcomes for patients with lung cancer treated with immunotherapy

May 23, 2024
in Technology and Engineering
Reading Time: 4 mins read
0
Headshot of Tafadzwa Chaunzwa
66
SHARES
597
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Tafadzwa Chaunzwa, MD, a  researcher in the Artificial Intelligence in Medicine (AIM) Program at Mass General Brigham and a senior resident physician at the Harvard Radiation Oncology Program, is the lead author of a paper published in JAMA Oncology. Chaunzwa and senior author Hugo Aerts, PhD, director of the AIM Program, and associate professor at Harvard University, shared highlights from their paper.

Headshot of Tafadzwa Chaunzwa

Credit: Brigham and Women’s Hospital

Tafadzwa Chaunzwa, MD, a  researcher in the Artificial Intelligence in Medicine (AIM) Program at Mass General Brigham and a senior resident physician at the Harvard Radiation Oncology Program, is the lead author of a paper published in JAMA Oncology. Chaunzwa and senior author Hugo Aerts, PhD, director of the AIM Program, and associate professor at Harvard University, shared highlights from their paper.

How would you summarize your study for a lay audience?

As treatments like immunotherapy improve cancer survival rates, there is a growing need for clinical decision-support tools that predict treatment response and patient outcomes. This is particularly important for lung cancer, which remains the top cause of cancer death globally. Previous studies linked body mass index (BMI) with lung cancer outcomes and immunotherapy drug side effects. However, BMI is a limited measure that doesn’t capture details about different body tissues and their interaction with cancer therapies. We used medical imaging and artificial intelligence (AI) to analyze body composition in a large cohort of patients with lung cancer that has spread to other parts of the body. Our study found that changes in muscle mass and fat quality during treatment are important indicators of outcomes for this population.

 

What knowledge gaps does your study help to fill?

As we continue to improve the treatment of advanced lung cancer with different systemic agents, including immunotherapy drugs, biomarkers that are both prognostic and predictive of treatment response are increasingly needed to inform clinical decisions. Prior studies identified an association between BMI and lung cancer outcomes. An association between BMI and the incidence of side effects with immunotherapy has also been elucidated. However, BMI alone is a crude metric that does not capture the distribution and relative contributions of different body tissues. Medical imaging-based analyses of body composition are being increasingly explored; however, in the setting of advanced non-small cell lung cancer (NSCLC), studies have been limited by small sample sizes and manual and difficult-to-reproduce methodologies.

How did you conduct your study?

We set out to perform comprehensive body composition analysis in large cohorts of individuals treated for advanced or metastatic lung cancer with different systemic drugs. We developed a robust end-to-end AI-based platform to assist with this task.

What did you find?

We found that while the distribution of different tissue compartments at the start of cancer-directed treatment had some value, the change in these measurements over the course of treatment was more strongly associated with patient outcomes. Specifically, we found that loss in muscle mass was a poor prognostic factor in patients treated with chemotherapy, immunotherapy, or chemoimmunotherapy. Interestingly, among patients receiving immunotherapy, either alone or in combination with chemotherapy, changes in the quality of the fat under the skin (subcutaneous adipose tissue), as seen on CT scans, were also associated with the risk for lung cancer progression or mortality.

What are the implications?

This study presents key breakthroughs that will help advance the prognostication and surveillance of patients receiving immunotherapy for NSCLC. The first breakthrough is the implementation of an automated AI-based pipeline for comprehensive body composition analysis at scale in a diverse population of patients receiving immunotherapy and cytotoxic chemotherapy for advanced NSCLC. This is the largest and most extensive such study, incorporating both real-world data and prospective clinical trial cohorts, with longitudinal collection of multimodal data and extended follow-up to monitor disease response to therapy. Our results demonstrate the potential of this analysis framework to provide a more nuanced understanding of the relationship between body composition and response to immunotherapy in NSCLC compared to crude BMI measurements. This may have important clinical implications for patient selection, treatment, and monitoring. The second contribution is sharing this robust end-to-end deep-learning pipeline for automated slice selection and body compartment segmentation on cross-sectional imaging.

What are the next steps?

We offer the software as an open-source AI tool that seamlessly integrates with platforms for image analysis and also disseminate it on the modelhub.ai platform. By making this algorithm publicly available, we hope to accelerate future studies in this domain and further facilitate the development of novel approaches for analyzing complex cancer imaging data sets. This will allow further investigation of important associations established using BMI or manual CT-based body composition measurements. More broadly, advances in this research area will help guide the management of different cancers and improve our capacity for precision oncology.

Authorship: In addition to Chaunzwa and Aerts, additional Mass General Brigham authors include Jack M. Qian, Leonard Nuernberg, Justin W. Johnson, and Raymond H. Mak. Additional authors include Qin Li, Biagio Ricciuti, Jakob Weiss, Zhongyi Zhang, Jamie McKay, Ioannis Kagiampakis, Damian Bikiel, Alessandro Di Federico, Joao V. Alessi, Etai Jacob, and Mark M. Awad.

Paper cited: Chaunzwa, T et al. “Body Composition in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy” JAMA Oncology DOI: 10.1001/jamaoncol.2024.1120



Journal

JAMA Oncology

DOI

10.1001/jamaoncol.2024.1120

Method of Research

Observational study

Subject of Research

People

Article Title

Body Composition in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy

Article Publication Date

23-May-2024

Share26Tweet17
Previous Post

Unlocking cryptocurrency profits: AI-powered trading strategies tame market swings

Next Post

People who care for loved ones with arthritis carry an economic burden

Related Posts

blank
Technology and Engineering

Ultrahigh-Throughput Complex-Field Microscopy via FACE Technique

August 11, 2025
blank
Technology and Engineering

Policy Solutions Supporting Families Facing Childhood Adversity

August 11, 2025
blank
Technology and Engineering

Scientists Uncover Ingenious Strategy to Encourage Healthier, Eco-Friendly Menu Selections for Diners

August 11, 2025
blank
Technology and Engineering

Otoferlin Unveiled as Childhood Lupus Nephritis Biomarker

August 11, 2025
blank
Technology and Engineering

Nanostructured Gd2O3: Synthesis Methods for Supercapacitors

August 11, 2025
blank
Technology and Engineering

Broadband Unidirectional Imaging via Wafer-Scale Nano-Processors

August 11, 2025
Next Post
People who care for loved ones with arthritis carry an economic burden

People who care for loved ones with arthritis carry an economic burden

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27532 shares
    Share 11010 Tweet 6881
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    945 shares
    Share 378 Tweet 236
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    310 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Stalking and Restraining Orders Associated with Elevated Cardiovascular Disease Risk in Women
  • SKP2 Ubiquitylation Controls IDH1 in Cancer
  • Post-Starburst Formation of Massive Galaxies and Black Holes
  • FungAMR: Unlocking Fungal Antimicrobial Resistance Mutations

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,860 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading