Thursday, October 16, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Archaeology

Developing AI to Recognize Ancient Artists

October 16, 2025
in Archaeology
Reading Time: 4 mins read
0
Participant creates finger flutings in VR setup
65
SHARES
592
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Researchers from Griffith University have pioneered an innovative digital archaeology framework to probe one of humanity’s oldest artistic expressions—finger fluting. This primitive art form, characterized by finger traces etched onto cave walls coated with a soft mineral film called moonmilk, has long puzzled researchers, especially regarding the identity of its creators. By merging tactile experimentation and cutting-edge virtual reality (VR) technologies, the team sought to train artificial intelligence (AI) to distinguish the sex of individuals responsible for these ancient markings, illuminating aspects of early human behavior and cultural practices.

Finger flutings constitute a unique form of rock art wherein fingers are dragged across soft mineral deposits on cave surfaces, leaving behind linear impressions. Present in pitch-dark caves across Europe and Australia, these enigmatic traces date back tens of thousands—and in some cases hundreds of thousands—of years. The oldest discovered examples in France have been ascribed to Neanderthals, potentially extending human artistic activities back approximately 300,000 years. Despite their age and significance, fundamental questions about the makers of these marks—in particular, their sex—have remained unanswered, partly due to the limitations of traditional archaeological methodologies.

Historically, attempts to decode the identity of fluting artists relied on biometric analyses such as finger length ratios or hand size assessments. However, these approaches proved fraught with inconsistencies due to several confounding variables. Variability in finger pressure during fluting, diverse surface textures, and pigment distortions often compromised the reliability of measurements. Moreover, substantial morphological overlap between males and females diminished the effectiveness of purely anatomical markers. To address these challenges, the Griffith research team employed a digital archaeology approach that circumvents these anthropometric assumptions and applies machine learning techniques to the problem.

Central to this study were two controlled experiments involving 96 adult participants who each created a series of finger flutings under two conditions. The first involved a tactile session using an innovative moonmilk clay substitute designed to replicate the texture and responsiveness of real cave surfaces. The second took place in an immersive VR environment utilizing Meta Quest 3 headsets, allowing the team to simulate the act of fluting in a virtual setting. Each participant produced nine flutings twice—once physically and once virtually—generating a comprehensive dataset for subsequent analysis.

The collected images of the flutings served as input for training two prevalent image-recognition models. These neural networks were tasked with learning subtle visual patterns that might correlate with the sex of the creator. Crucially, the team sought to avoid overfitting—a common pitfall where models perform well on training data but fail to generalize to new, unseen samples. Rigorous validation metrics were employed to assess whether the AI was genuinely discerning intrinsic features of the flutings or merely memorizing extraneous artifacts unique to the experimental setup.

Results demonstrated a notable contrast between the VR and tactile datasets. Models trained on tactile replicates achieved approximately 84 percent accuracy in sex classification, suggesting that tangible interactions with the moonmilk-like substrate captured meaningful discriminative features. Additionally, one model exhibited a strong discrimination score indicative of reliable pattern recognition. By contrast, models processing VR-generated flutings failed to deliver consistent or balanced performance, underlining current technological limitations in simulating the nuanced physicality of ancient finger marks within virtual environments.

Nevertheless, the tactile models revealed some reliance on dataset-specific characteristics, such as minor artifacts introduced during the creation or image capture processes, rather than universal features of finger flutings themselves. This finding underscores the necessity for continued refinement, including diversification of datasets and enhanced feature extraction methods, to develop robust tools applicable across varied archaeological contexts. The researchers emphasize the iterative nature of this endeavor, positioning their framework as a foundational proof of concept that can evolve with further contributions from the interdisciplinary scientific community.

The study exemplifies the fusion of experimental archaeology with state-of-the-art machine learning workflows to investigate prehistoric cultural materials. By providing detailed protocols, open-source code, and comprehensive datasets, the team encourages replication, scrutiny, and expansion of their work. Such openness not only fosters transparency but also accelerates methodological advances essential for transforming digital archaeology into a rigorous and reproducible science, capable of addressing questions previously relegated to speculative interpretation.

Beyond archaeology, the implications of this research reverberate across fields such as forensic science, cognitive psychology, and human-computer interaction. Understanding how ancient humans engaged with their environments and expressed identity through subtle manual gestures enriches our comprehension of cognitive evolution and social dynamics. Moreover, the technical advances in tactile simulation and machine vision may inspire novel applications ranging from crime scene analysis to enhanced virtual training systems, highlighting the broad potential of this interdisciplinary approach.

Dr. Andrea Jalandoni, the study’s lead digital archaeologist from the Griffith Centre for Social and Cultural Research, articulated the cultural significance of identifying fluting creators. “Determining whether men or women made these marks can have profound real-world effects,” she noted, citing scenarios such as regulating site access based on cultural traditions. Previously employed biometric methods proved insufficient for such delicate distinctions, making the digital archaeology path not only innovative but necessary to address deeply rooted anthropological inquiries.

Contributing computational expertise, Dr. Gervase Tuxworth from the School of Information and Communication Technology explained that while the results are preliminary, they open an intriguing window into ancient human signatures preserved through millennia-old gestures. “Our models highlight promising avenues but also reveal challenges intrinsic to interpreting prehistoric art through modern technology,” he reflected, emphasizing the nuanced interplay between physical interaction data and digital representation.

Co-author Dr. Robert Haubt from the Australian Research Centre for Human Evolution underscored the study’s broader impact and future trajectory: “We’ve laid a scalable digital foundation that others can build upon, critique, and apply in diverse contexts. This democratization is key to transforming initial proof of concept into reliable archaeological tools that deepen our understanding of human history.” The published findings in Scientific Reports mark an important milestone, demonstrating the feasibility of integrating tactile archaeology, VR experimentation, and AI-driven analysis to unravel the identities hidden within ancient cave walls.

As machine learning and archaeological methodologies progressively intertwine, this groundbreaking research symbolizes a paradigm shift in how scientists probe the behavior and cultural expressions of early humans. While challenges remain, especially in refining data generalizability and simulation fidelity, the innovative digital archaeology framework developed by the Griffith team charts a promising path toward uncovering forgotten narratives embedded in the very fabric of prehistoric art.


Subject of Research: People

Article Title: Training AI to identify ancient artists

News Publication Date: 16-Oct-2025

Web References: http://dx.doi.org/10.1038/s41598-025-18098-4

References: Using digital archaeology and machine learning to determine sex in finger flutings, Scientific Reports

Image Credits: Andrea Jalandoni

Keywords: Archaeology, Artificial intelligence

Tags: AI in digital archaeologyancient rock art analysiscultural practices of early humansfinger fluting researchgender identification in archaeologyidentifying ancient artistsinnovative techniques in archaeologyinterdisciplinary approaches in historical researchmoonmilk cave art techniquesNeanderthal artistic expressionprehistoric human behaviorvirtual reality in archaeology
Share26Tweet16
Previous Post

Canada’s Women’s Health Research Funding Remains Neglected

Next Post

Kaempferol Modulates Ewing Sarcoma via miR-26b-5p

Related Posts

Coring in the 'garden of Amun' Karnak
Archaeology

New Discoveries Unveil the Origins of Ancient Egypt’s Karnak Temple

October 14, 2025
Illustration of a chacu
Archaeology

Ancient South American Hunting Traps Uncovered Through Satellite Imagery

October 14, 2025
blank
Archaeology

Neolithic Communities Embraced Newcomers, Study Reveals

October 9, 2025
From meat to raw material: the Middle Pleistocene elephant butchery site of Casal Lumbroso (Rome, central Italy)
Archaeology

Early Humans Used Small Tools to Butcher Elephants and Crafted Large Tools from Their Bones

October 8, 2025
The Great Holocene Transformation
Archaeology

New Study Uncovers How War Fueled the Rise of Complex Societies

October 8, 2025
Donkey
Archaeology

Jamestown Colonists Brought Donkeys Alongside Horses to North America, Ancient Bones Reveal

October 7, 2025
Next Post
blank

Kaempferol Modulates Ewing Sarcoma via miR-26b-5p

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27568 shares
    Share 11024 Tweet 6890
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    977 shares
    Share 391 Tweet 244
  • Bee body mass, pathogens and local climate influence heat tolerance

    648 shares
    Share 259 Tweet 162
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    515 shares
    Share 206 Tweet 129
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    482 shares
    Share 193 Tweet 121
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Olanzapine’s Impact on Young Anorexia Nervosa Patients
  • Pyrolysis Liquid from Tunisian Woods: Antifungal & Anti-Termite Insights
  • How Vibrating Molecules Could Unlock New Insights in Cell Biology
  • New Study Uncovers Role of Tumor Bacteria in Driving Cancer Treatment Resistance

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,190 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading