Saturday, November 8, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Biology

CMU researchers outline promises, challenges of understanding AI for biological discovery

August 9, 2024
in Biology
Reading Time: 3 mins read
0
CMU researchers outline promises, challenges of understanding AI for biological discovery
66
SHARES
596
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Machine learning is a powerful tool in computational biology, enabling the analysis of a wide range of biomedical data such as genomic sequences and biological imaging. But when researchers use machine learning in computational biology, understanding model behavior remains crucial for uncovering the underlying biological mechanisms in health and disease.

Machine learning is a powerful tool in computational biology, enabling the analysis of a wide range of biomedical data such as genomic sequences and biological imaging. But when researchers use machine learning in computational biology, understanding model behavior remains crucial for uncovering the underlying biological mechanisms in health and disease.

In a recent article in Nature Methods, researchers at Carnegie Mellon University’s School of Computer Science propose guidelines that outline pitfalls and opportunities for using interpretable machine learning methods to tackle computational biology problems. The Perspectives article, “Applying Interpretable Machine Learning in Computational Biology — Pitfalls, Recommendations and Opportunities for New Developments,” is featured in the journal’s August special issue on AI.

“Interpretable machine learning has generated significant excitement as machine learning and artificial intelligence tools are being applied to increasingly important problems,” said Ameet Talwalkar, an associate professor in CMU’s Machine Learning Department (MLD). “As these models grow in complexity, there is great promise not only in developing highly predictive models but also in creating tools that help end users understand how and why these models make certain predictions. However, it is crucial to acknowledge that interpretable machine learning has yet to deliver turnkey solutions to this interpretability problem.”

The paper is a collaboration between doctoral students Valerie Chen in MLD and Muyu (Wendy) Yang in the Ray and Stephanie Lane Computational Biology Department. Chen’s earlier work critiquing the interpretable machine learning community’s lack of grounding in downstream use cases inspired the article, and the idea was developed through discussions with Yang and Jian Ma, the Ray and Stephanie Lane Professor of Computational Biology. 

“Our collaboration began with a deep dive into computational biology papers to survey the application of interpretable machine learning methods,” Yang said. “We noticed that many applications used these methods in a somewhat ad hoc manner. Our goal with this paper was to provide guidelines for more robust and consistent use of interpretable machine learning methods in computational biology.”

One major pitfall the paper addresses is the reliance on a single interpretable machine learning method. Instead, the researchers recommend using multiple interpretable machine learning methods with diverse sets of hyperparameters and comparing their results to obtain a more comprehensive understanding of the model behavior and its underlying interpretations.

“While some machine learning models seem to work surprisingly well, we often do not fully understand why,” Ma said. “In scientific domains like biomedicine, understanding why models work is crucial for discovering fundamental biological mechanisms.”

The paper also warns against cherry-picking results when evaluating interpretable machine learning methods, as this can lead to incomplete or biased interpretations of scientific findings.

Chen emphasized that the guidelines may have broader implications for a wider audience of researchers interested in applying interpretable machine-learning methods to their work.

“We hope that machine learning researchers developing new interpretable machine learning methods and tools — particularly those working on explaining large language models — will carefully consider the human-centric aspects of interpretable machine learning,” Chen said. “This includes understanding who their target user is and how the method will be used and evaluated.”

While understanding model behavior remains crucially important for scientific discovery and a fundamentally unsolved machine learning problem, the authors hope these challenges spur further interdisciplinary collaborations to facilitate the broader use of AI for scientific impact.



Journal

Nature Methods

DOI

10.1038/s41592-024-02359-7

Article Title

Applying Interpretable Machine Learning in Computational Biology — Pitfalls, Recommendations and Opportunities for New Developments

Share26Tweet17
Previous Post

Information scientists develop method to detect doping cases using AI

Next Post

Unlocking the genetic secrets of strawberries for superior fruit quality

Related Posts

blank
Biology

Unraveling Reproductive Control in Macrobrachium Post-Abalation

November 8, 2025
blank
Biology

Brain Rhythm Disruption in Schizophrenia Model Mice

November 7, 2025
blank
Biology

Apis cerana cerana: Pollination Insights from Antennal Genes

November 7, 2025
blank
Biology

More Children, Shorter Lifespan? Clear Evidence from the Great Finnish Famine

November 7, 2025
blank
Biology

“Sex Differences in Placental Androgen Response to Undernutrition”

November 7, 2025
blank
Biology

COP6 Decision on Dental Amalgam Advances Equity-Focused, Patient-Centered Care

November 7, 2025
Next Post
Phenotypic variations across the three genetic groups of the panel.

Unlocking the genetic secrets of strawberries for superior fruit quality

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27578 shares
    Share 11028 Tweet 6893
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    985 shares
    Share 394 Tweet 246
  • Bee body mass, pathogens and local climate influence heat tolerance

    651 shares
    Share 260 Tweet 163
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    519 shares
    Share 208 Tweet 130
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    487 shares
    Share 195 Tweet 122
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Zataria multiflora’s Impact on Sulfur Mustard Veterans
  • Mobility Reveals Hidden Air Pollution Inequality in Boston
  • Analyzing Key Factors Behind Filicide Cases
  • Restoring mTOR Signaling Boosts Growth-Restricted Placenta Cells

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,189 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading