Friday, November 14, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Mathematics

AI deciphers new gene regulatory code in plants and makes accurate predictions for newly sequenced genomes

April 26, 2024
in Mathematics
Reading Time: 3 mins read
0
AI deciphers new gene regulatory code in plants and makes accurate predictions for newly sequenced genomes
66
SHARES
600
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Genome sequencing technology provides thousands of new plant genomes annually. In agriculture, researchers merge this genomic information with observational data (measuring various plant traits) to identify correlations between genetic variants and crop traits like seed count, resistance to fungal infections, fruit color, or flavor. However, the grasp of how genetic variation influences gene activity at the molecular level is quite limited. This gap in knowledge hinders the breeding of “smart crops” with enhanced quality and reduced negative environmental impact achieved by combination of specific gene variants of known function.

Genome sequencing technology provides thousands of new plant genomes annually. In agriculture, researchers merge this genomic information with observational data (measuring various plant traits) to identify correlations between genetic variants and crop traits like seed count, resistance to fungal infections, fruit color, or flavor. However, the grasp of how genetic variation influences gene activity at the molecular level is quite limited. This gap in knowledge hinders the breeding of “smart crops” with enhanced quality and reduced negative environmental impact achieved by combination of specific gene variants of known function.

Researchers from the IPK Leibniz Institute and Forschungszentrum Jülich (FZ) have made a significant breakthrough to tackle this challenge. Led by Dr. Jedrzej Jakub Szymanski, the international research team trained interpretable deep learning models, a subset of AI algorithms, on a vast dataset of genomic information from various plant species. “These models not only were able to accurately predict gene activity from sequences but also pinpoint which sequence parts contribute to these predictions”, explains the head of IPK’s research group “Network Analysis and Modelling”. The AI technology which the researchers applied is akin to that used in computer vision, which involves recognizing facial features in images and inferring emotions.

In contrast to previous approaches based on statistical enrichment, here the researchers combined identification of sequence features with determination of the mRNA copy number in the frame of a mathematical model that has been trained accounting for biological information on gene model structure and sequence homology, thus gene evolution.

“We were truly amazed by the effectiveness. Within a few days of training, we rediscovered many known regulatory sequences and found that about 50% of the features identified were entirely new. These models excellently generalized across plant species they were not trained on, making them valuable for analyzing newly sequenced genomes”, says Dr. Jedrzej Jakub Szymanski. “And we specifically demonstrated their application in diverse tomato cultivars with long-read sequencing data. We pinpointed specific regulatory sequence variations that explained observed differences in gene activity and, consequently, variations in shape, color, and robustness. This is a remarkable improvement over classically used statistical associations of single nucleotide polymorphisms.”

The team has openly shared their models and provided a web interface for their use. “Interestingly, much effort went into degrading our model’s performance. To avoid overly optimistic results due to AI finding shortcuts required from me a deep dive into gene regulation biology to eliminate any potential bias, reduce data leakage and overfitting”, says Fritz Forbang Peleke, the lead machine learning researcher and first author of the study, which was published in the journal “Nature Communications”.

Dr. Simon Zumkeller, a co-author and evolutionary biologist from FZ Jülich, remarked, “With the presented analyses we can investigate and compare gene regulation in plants and infer its evolution. For practical applications, the method provides a new foundation, too. We are approaching the routine identification of gene regulatory elements in known and newly sequenced plant genomes, in various tissues, and under different environmental conditions.”



Journal

Nature Communications

DOI

10.1038/s41467-024-47744-0

Article Title

Deep learning the cis-regulatory code for gene expression in selected model plants

Article Publication Date

25-Apr-2024

Share26Tweet17
Previous Post

ETRI develops an automated benchmark for labguage-based task planners

Next Post

New favorite—smart electric wheel drive tractor: realizes efficient drive with ingenious structure and intelligent control

Related Posts

blank
Mathematics

Daily Environmental Antibiotic Exposure Could Speed Up Global Antibiotic Resistance, New Study Reveals

November 14, 2025
blank
Mathematics

Atomic Insights May Revolutionize Efficiency in Chemical Manufacturing

November 13, 2025
blank
Mathematics

Advancing Image Compression: Enhanced Efficiency and Flexibility

November 13, 2025
blank
Mathematics

Pusan National University Researchers Create Robust “Huber Mean” Method for Geometric Data Analysis

November 13, 2025
blank
Mathematics

FAU Engineering Makes a Quantum Leap in Kidney Disease Detection

November 12, 2025
blank
Mathematics

Paderborn Advances High-Performance Computing with Launch of New ‘Otus’ Supercomputer

November 12, 2025
Next Post
New favorite—smart electric wheel drive tractor: realizes efficient drive with ingenious structure and intelligent control

New favorite—smart electric wheel drive tractor: realizes efficient drive with ingenious structure and intelligent control

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27581 shares
    Share 11029 Tweet 6893
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    988 shares
    Share 395 Tweet 247
  • Bee body mass, pathogens and local climate influence heat tolerance

    651 shares
    Share 260 Tweet 163
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    520 shares
    Share 208 Tweet 130
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    488 shares
    Share 195 Tweet 122
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Long-Term Biventricular Support Paves Way for Pediatric Heart Transplant
  • Delirium Causes in Long-Term Care: A Hydra’s Challenge
  • Assessing Chaplain Role in Advance Care Planning
  • Impact of Bioinformatics on Microbiome Shotgun Analysis

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,190 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading