Wednesday, October 1, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Mathematics

AI deciphers new gene regulatory code in plants and makes accurate predictions for newly sequenced genomes

April 26, 2024
in Mathematics
Reading Time: 3 mins read
0
AI deciphers new gene regulatory code in plants and makes accurate predictions for newly sequenced genomes
66
SHARES
599
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Genome sequencing technology provides thousands of new plant genomes annually. In agriculture, researchers merge this genomic information with observational data (measuring various plant traits) to identify correlations between genetic variants and crop traits like seed count, resistance to fungal infections, fruit color, or flavor. However, the grasp of how genetic variation influences gene activity at the molecular level is quite limited. This gap in knowledge hinders the breeding of “smart crops” with enhanced quality and reduced negative environmental impact achieved by combination of specific gene variants of known function.

Genome sequencing technology provides thousands of new plant genomes annually. In agriculture, researchers merge this genomic information with observational data (measuring various plant traits) to identify correlations between genetic variants and crop traits like seed count, resistance to fungal infections, fruit color, or flavor. However, the grasp of how genetic variation influences gene activity at the molecular level is quite limited. This gap in knowledge hinders the breeding of “smart crops” with enhanced quality and reduced negative environmental impact achieved by combination of specific gene variants of known function.

Researchers from the IPK Leibniz Institute and Forschungszentrum Jülich (FZ) have made a significant breakthrough to tackle this challenge. Led by Dr. Jedrzej Jakub Szymanski, the international research team trained interpretable deep learning models, a subset of AI algorithms, on a vast dataset of genomic information from various plant species. “These models not only were able to accurately predict gene activity from sequences but also pinpoint which sequence parts contribute to these predictions”, explains the head of IPK’s research group “Network Analysis and Modelling”. The AI technology which the researchers applied is akin to that used in computer vision, which involves recognizing facial features in images and inferring emotions.

In contrast to previous approaches based on statistical enrichment, here the researchers combined identification of sequence features with determination of the mRNA copy number in the frame of a mathematical model that has been trained accounting for biological information on gene model structure and sequence homology, thus gene evolution.

“We were truly amazed by the effectiveness. Within a few days of training, we rediscovered many known regulatory sequences and found that about 50% of the features identified were entirely new. These models excellently generalized across plant species they were not trained on, making them valuable for analyzing newly sequenced genomes”, says Dr. Jedrzej Jakub Szymanski. “And we specifically demonstrated their application in diverse tomato cultivars with long-read sequencing data. We pinpointed specific regulatory sequence variations that explained observed differences in gene activity and, consequently, variations in shape, color, and robustness. This is a remarkable improvement over classically used statistical associations of single nucleotide polymorphisms.”

The team has openly shared their models and provided a web interface for their use. “Interestingly, much effort went into degrading our model’s performance. To avoid overly optimistic results due to AI finding shortcuts required from me a deep dive into gene regulation biology to eliminate any potential bias, reduce data leakage and overfitting”, says Fritz Forbang Peleke, the lead machine learning researcher and first author of the study, which was published in the journal “Nature Communications”.

Dr. Simon Zumkeller, a co-author and evolutionary biologist from FZ Jülich, remarked, “With the presented analyses we can investigate and compare gene regulation in plants and infer its evolution. For practical applications, the method provides a new foundation, too. We are approaching the routine identification of gene regulatory elements in known and newly sequenced plant genomes, in various tissues, and under different environmental conditions.”



Journal

Nature Communications

DOI

10.1038/s41467-024-47744-0

Article Title

Deep learning the cis-regulatory code for gene expression in selected model plants

Article Publication Date

25-Apr-2024

Share26Tweet17
Previous Post

ETRI develops an automated benchmark for labguage-based task planners

Next Post

New favorite—smart electric wheel drive tractor: realizes efficient drive with ingenious structure and intelligent control

Related Posts

blank
Mathematics

AR and AI Technologies Enable Automatic Diagnosis of Agromyzid Leafminer Damage Levels

September 30, 2025
blank
Mathematics

Electroacupuncture Shows Promise for Early Urinary Incontinence Following Radical Prostatectomy

September 30, 2025
blank
Mathematics

Breakthrough in Scalable, Efficient Quantum Error Correction Paves the Way for Fault-Tolerant Quantum Computing

September 29, 2025
blank
Mathematics

How Blockchain Technology Can Enhance Trust in the Restaurant Industry

September 26, 2025
blank
Mathematics

The Importance of Advancing from Chiral Molecular Macrocycles to Chiral Topological Macrocycles

September 26, 2025
blank
Mathematics

ITU and UNDP Unite Global Community to Drive Technology for Social Good

September 26, 2025
Next Post
New favorite—smart electric wheel drive tractor: realizes efficient drive with ingenious structure and intelligent control

New favorite—smart electric wheel drive tractor: realizes efficient drive with ingenious structure and intelligent control

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27561 shares
    Share 11021 Tweet 6888
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    969 shares
    Share 388 Tweet 242
  • Bee body mass, pathogens and local climate influence heat tolerance

    646 shares
    Share 258 Tweet 162
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    513 shares
    Share 205 Tweet 128
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    476 shares
    Share 190 Tweet 119
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Dual-Layer Lattice Pads Optimized for Gait Pressure
  • Coral Species Impact Productivity and Diversity
  • Isovaleric Acidemia Linked to Schizophrenia: Case Report
  • Feasibility Study: Scheduling Remission Consultations in Breast Cancer

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,185 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading