Monday, August 18, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Mathematics

USTC proposes novel design methodology for hardware Gaussian random number generators

May 6, 2024
in Mathematics
Reading Time: 3 mins read
0
USTC Proposes Novel Design Methodology for Hardware Gaussian Random Number Generators
65
SHARES
592
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

A research team from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) proposed a novel design methodology for Gaussian random number (GRN) generators tailored for SerDes simulation systems, making a progress in hardware GRN generation algorithms. The study was published online in IEEE Transactions on Circuits and Systems I: Regular Papers.

USTC Proposes Novel Design Methodology for Hardware Gaussian Random Number Generators

Credit: Zhuo Chen

A research team from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) proposed a novel design methodology for Gaussian random number (GRN) generators tailored for SerDes simulation systems, making a progress in hardware GRN generation algorithms. The study was published online in IEEE Transactions on Circuits and Systems I: Regular Papers.

Additive white Gaussian noise (AWGN) serves as a standard model for encapsulating the combined impact of various random and unpredictable noise sources. Consequently, GRN generators, capable of producing AWGN as hardware modules, play an importance role in numerous high-performance hardware simulation systems.

Since the pioneering implementation of the Box-Muller algorithm in hardware back in 2000, research into hardware GRN generation algorithms has flourished. However, for hardware systems, traditional algorithms often necessitate additional multipliers and rounding units, leading to increased hardware consumption and error sources. Moreover, the output range designed via traditional methods typically requires post-design testing or theoretical analysis for determination. Direct means for expanding the output range is lacking.

Based on the relatively novel Piecewise-CLT algorithm, the team proposed a novel design approach for GRN generators capable of accommodating arbitrary σ values and output ranges, which was achieved by introducing variable σ values and pre-defined GRN output ranges into the algorithmic expression derivation process. Utilizing this approach, the team crafted a generator boasting a theoretical output range of ±14σ.

However, the team’s attempts to introduce reconfigurability into the algorithm faced a challenge, i.e. directly reconfiguring the σ value of the existing hardware architecture led to increased errors as σ decreased, severely limiting practicality. Therefore, a parameter termed the scaling index was introduced to the algorithm. This parameter enabled the algorithm to adjust relevant values differently based on varying σ values during random number generation, resulting in a relatively stable error curve and facilitating real-time configuration of σ values.

Based on the above findings, the team proposed a novel design methodology for hardware GRN generators. Compared to traditional approaches, this method offers superior flexibility and usability by supporting arbitrary σ values, arbitrary output ranges, and reconfigurability. It stands poised to underpin the development of high-performance hardware simulation systems characterized by higher clock speeds, increased degrees of parallelism, and enhanced hardware resource utilization rates. 



Journal

IEEE Transactions on Circuits and Systems

DOI

10.1109/TCSI.2024.3374731

Article Title

Flexible FPGA Gaussian Random Number Generators With Reconfigurable Variance

Article Publication Date

20-Mar-2024

Share26Tweet16
Previous Post

Nanoparticle catalysts convert carbon dioxide to carbon monoxide to make useful compounds

Next Post

Science doesn’t understand how ice forms (video)

Related Posts

blank
Mathematics

Students’ Imaging Tool Enables Sharper Detection, Earlier Warnings from Lab to Space

August 15, 2025
blank
Mathematics

Meta-Analysis Suggests Helicobacter pylori Eradication Could Increase Risk of Reflux Esophagitis

August 14, 2025
blank
Mathematics

Innovative Few-Shot Learning Model Boosts Accuracy in Crop Disease Detection

August 13, 2025
blank
Mathematics

Scientists Unveil Mathematical Model Explaining ‘Matrix Tides’ and Complex Wave Patterns in Qiantang River

August 12, 2025
blank
Mathematics

Enhancing Medical Imaging with Advanced Pixel-Particle Analogies

August 12, 2025
blank
Mathematics

Brain-Inspired Devices Become Reality Through Neuromorphic Technology and Machine Learning

August 12, 2025
Next Post
Science doesn't understand how ice forms (video)

Science doesn't understand how ice forms (video)

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27535 shares
    Share 11011 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    949 shares
    Share 380 Tweet 237
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Digital Pathology Reveals Pancreatic Cancer Risks
  • Spin-Orbit Coupling Enables Optical Vortex Generation
  • Multivariate GWAS Boosts Dyslexia and Reading Gene Discovery
  • Repurposing Vacant Urban Homes for China’s Carbon Neutrality

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,860 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading