Thursday, August 21, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Medicine

New AI program from BU researchers could predict likelihood of Alzheimer’s disease

June 25, 2024
in Medicine
Reading Time: 5 mins read
0
65
SHARES
594
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Trying to figure out whether someone has Alzheimer’s disease usually involves a battery of assessments—interviews, brain imaging, blood and cerebrospinal fluid tests. But, by then, it’s probably already too late: memories have started slipping away, long established personality traits have begun subtly shifting. If caught early, new pioneering treatments can slow the disease’s remorseless progression, but there’s no surefire way to predict who will develop the dementia associated with Alzheimer’s.

Trying to figure out whether someone has Alzheimer’s disease usually involves a battery of assessments—interviews, brain imaging, blood and cerebrospinal fluid tests. But, by then, it’s probably already too late: memories have started slipping away, long established personality traits have begun subtly shifting. If caught early, new pioneering treatments can slow the disease’s remorseless progression, but there’s no surefire way to predict who will develop the dementia associated with Alzheimer’s.

Now, Boston University researchers say they have designed a promising new artificial intelligence computer program, or model, that could one day help change that—just by analyzing a patient’s speech.

Their model can predict, with an accuracy rate of 78.5 percent, whether someone with mild cognitive impairment is likely to remain stable over the next six years—or fall into the dementia associated with Alzheimer’s disease. While allowing clinicians to peer into the future and make earlier diagnoses, the researchers say their work could also help make cognitive impairment screening more accessible by automating parts of the process—no expensive lab tests, imaging exams, or even office visits required. The model is powered by machine learning, a subset of AI where computer scientists teach a program to independently analyze data.

“We wanted to predict what would happen in the next six years—and we found we can reasonably make that prediction with relatively good confidence and accuracy,” says Ioannis (Yannis) Paschalidis, director of the BU Rafik B. Hariri Institute for Computing and Computational Science & Engineering. “It shows the power of AI.” The multidisciplinary team of engineers, neurobiologists, and computer and data scientists published their findings in Alzheimer’s & Dementia, the journal of the Alzheimer’s Association.

“We hope, as everyone does, that there will be more and more Alzheimer’s treatments made available,” says Paschalidis, a BU College of Engineering Distinguished Professor of Engineering and founding member of the Faculty of Computing & Data Sciences. “If you can predict what will happen, you have more of an opportunity and time window to intervene with drugs, and at least try to maintain the stability of the condition and prevent the transition to more severe forms of dementia.”

Calculating the Probability of Alzheimer’s Disease

To train and build their new model, the researchers turned to data from one of the nation’s oldest and longest-running studies—the BU-led Framingham Heart Study. Although the Framingham study is focused on cardiovascular health, participants showing signs of cognitive decline undergo regular neuropsychological tests and interviews, producing a wealth of longitudinal information on their cognitive well-being.

Paschalidis and his colleagues were given audio recordings of 166 initial interviews with people, between ages 63 and 97, diagnosed with mild cognitive impairment—76 who would remain stable for the next six years and 90 whose cognitive function would progressively decline. They then used a combination of speech recognition tools—similar to the programs powering your smart speaker—and machine learning to train a model to spot connections between speech, demographics, diagnosis, and disease progression. After training it on a subset of the study population, they tested its predictive prowess on the rest of the participants.

“We combine the information we extract from the audio recordings with some very basic demographics—age, gender, and so on—and we get the final score,” says Paschalidis. “You can think of the score as the likelihood, the probability, that someone will remain stable or transition to dementia. It had significant predictive ability.”

Rather than using acoustic features of speech, like enunciation or speed, the model is just pulling from the content of the interview—the words spoken, how they’re structured. And Paschalidis says the information they put into the machine learning program is rough around the edges: the recordings, for example, are messy—low-quality and filled with background noise. “It’s a very casual recording,” he says. “And still, with this dirty data, the model is able to make something out of it.”

That’s important, because the project was partly about testing AI’s ability to make the process of dementia diagnosis more efficient and automated, with little human involvement. In the future, the researchers say, models like theirs could be used to bring care to patients who aren’t near medical centers or to provide routine monitoring through interaction with an at-home app, drastically increasing the number of people who get screened. According to Alzheimer’s Disease International, the majority of people with dementia worldwide never receive a formal diagnosis, leaving them shut off from treatment and care.

Rhoda Au, a coauthor on the paper, says AI has the power to create “equal opportunity science and healthcare.” The study builds on the same team’s previous work, where they found AI could accurately detect cognitive impairment using voice recordings.

“Technology can overcome the bias of work that can only be done by those with resources, or care that has relied on specialized expertise that is not available to everyone,” says Au, a BU Chobanian & Avedisian School of Medicine professor of anatomy and neurobiology. For her, one of the most exciting findings was “that a method for cognitive assessment that has the potential to be maximally inclusive—possibly independent of age, sex/gender, education, language, culture, income, geography—could serve as a potential screening tool for detecting and monitoring symptoms related to Alzheimer’s disease.”

A Dementia Diagnosis from Home

In future research, Paschalidis would like to explore using data not just from formal clinician-patient interviews—with their scripted questions and predictable back-and-forth—but also from more natural, everyday conversations. He’s already looking ahead to a project on if AI can help diagnose dementia via a smartphone app, as well as expanding the current study beyond speech analysis—the Framingham tests also include patient drawings and data on daily life patterns—to boost the model’s predictive accuracy.

“Digital is the new blood,” says Au. “You can collect it, analyze it for what is known today, store it, and reanalyze it for whatever new emerges tomorrow.”

 

This research was funded, in part, by the National Science Foundation, the National Institutes of Health, and the BU Rajen Kilachand Fund for Integrated Life Science and Engineering.

Republishers are kindly reminded to uphold journalistic integrity by providing proper crediting, including a direct link back to the original source URL.



Journal

Alzheimer’s & Dementia

DOI

10.1002/alz.13886

Article Title

Prediction of Alzheimer’s disease progression within 6 years using speech: a novel approach leveraging language models

Article Publication Date

25-Jun-2024

Share26Tweet16
Previous Post

Telltale greenhouse gases could signal alien activity

Next Post

The evolution of firefly lights

Related Posts

Medicine

Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

August 21, 2025
blank
Medicine

Proximity Screening Boosts Graphene’s Electronic Quality

August 21, 2025
blank
Medicine

New Study Reveals 40% Decline in Leisure Reading Over Two Decades

August 21, 2025
blank
Medicine

TCF1 and LEF1 Sustain B-1a Cell Function

August 21, 2025
blank
Medicine

Groundbreaking Study Uncovers Link Between Mitochondrial Vulnerability and Neurovascular Function in Neuropsychiatric Disorders

August 21, 2025
blank
Medicine

Doped Quantum Antiferromagnet Created with Rydberg Tweezers

August 21, 2025
Next Post
Pyrocoelia analis

The evolution of firefly lights

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27536 shares
    Share 11011 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    951 shares
    Share 380 Tweet 238
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    508 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Ultrahigh-Precision Plasmonic Meta-Rotary Wave Oscillator
  • Unnatural Base Pair Detects Epigenetic Cytosine Changes
  • Noncommutative Metasurfaces: Pioneering New Frontiers in Quantum Entanglement
  • Multicenter Study Reveals Clinical and Microbiological Profiles of Bacterial Infections in Chinese Liver Cirrhosis Patients and Their Antibiotic Treatments

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading