Sunday, October 5, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Biology

U of T researchers develop deep-learning model that outperforms Google AI system to predict peptide structures

June 27, 2024
in Biology
Reading Time: 3 mins read
0
PhD Graduate Osama Abdin and Professor Philip M. Kim
66
SHARES
602
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Researchers at the University of Toronto have developed a deep-learning model, called PepFlow, that can predict all possible shapes of peptides – chains of amino acids that are shorter than proteins, but perform similar biological functions.

PhD Graduate Osama Abdin and Professor Philip M. Kim

Credit: University of Toronto, Donnelly Centre for Cellular and Biomolecular Research

Researchers at the University of Toronto have developed a deep-learning model, called PepFlow, that can predict all possible shapes of peptides – chains of amino acids that are shorter than proteins, but perform similar biological functions.

PepFlow combines machine learning and physics to model the range of folding patterns that a peptide can assume based on its energy landscape. Peptides, unlike proteins, are very dynamic molecules that can take on a range of conformations.

“We haven’t been able to model the full range of conformations for peptides until now,” said Osama Abdin, first author on the study and recent PhD graduate of molecular genetics at U of T’s Donnelly Centre for Cellular and Biomolecular Research. “PepFlow leverages deep-learning to capture the precise and accurate conformations of a peptide within minutes. There’s potential with this model to inform drug development through the design of peptides that act as binders.”

The study was published today in the journal Nature Machine Intelligence.

A peptide’s role in the human body is directly linked to how it folds, as its 3D structure determines the way it binds and interacts with other molecules. Peptides are known to be highly flexible, taking on a wide range of folding patterns, and are thus involved in many biological processes of interest to researchers in the development of therapeutics.

“Peptides were the focus of the PepFlow model because they are very important biological molecules and they are naturally very dynamic, so we need to model their different conformations to understand their function,” said Philip M. Kim, principal investigator on the study and a professor at the Donnelly Centre. “They’re also important as therapeutics, as can be seen by the GLP1 analogues, like Ozempic, used to treat diabetes and obesity.”

Peptides are also cheaper to produce than their larger protein counterparts, said Kim, who is also a professor of computer science at U of T’s Faculty of Arts & Science.

The new model expands on the capabilities of the leading Google Deepmind AI system for predicting protein structure, AlphaFold. PepFlow can outperform AlphaFold2 by generating a range of conformations for a given peptide, which AlphaFold2 was not designed to do.

What sets PepFlow apart is the technological innovations that power it. For instance, it is a generalized model that takes inspiration from Boltzmann generators, which are highly advanced physics-based machine learning models.

PepFlow can also model peptide structures that take on unusual formations, such as the ring-like structure that results from a process called macrocyclization. Peptide macrocycles are currently a highly promising venue for drug development.

While PepFlow improves upon AlphaFold2, it has limitations of its own, being the first version of a model. The study authors noted a number of ways in which PepFlow could be improved, including training the model with explicit data for solvent atoms, which would dissolve the peptides to form a solution, and for constraints on the distance between atoms in ring-like structures.

PepFlow was built to be easily expanded to account for additional considerations and new information and potential uses. Even as a first version, PepFlow is a comprehensive and efficient model with potential for furthering the development of treatments that depend on peptide binding to activate or inhibit biological processes.

“Modelling with PepFlow offers insight into the real energy landscape of peptides,” said Abdin. “It took two-and-a-half years to develop PepFlow and one month to train it, but it was worthwhile to move to the next frontier, beyond models that only predict one structure of a peptide.”



Journal

Nature Machine Intelligence

DOI

10.1038/s42256-024-00860-4

Article Title

Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion

Article Publication Date

27-Jun-2024

Share26Tweet17
Previous Post

The mechanism behind melanoma resistance to treatment

Next Post

With $12 million NIH grant renewal, Lewis Katz School of Medicine researchers to explore novel cell mechanism in heart injury and repair

Related Posts

blank
Biology

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 4, 2025
blank
Biology

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
blank
Biology

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025
blank
Biology

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025
blank
Biology

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025
blank
Biology

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 3, 2025
Next Post
With $12 million NIH grant renewal, Lewis Katz School of Medicine researchers to explore novel cell mechanism in heart injury and repair

With $12 million NIH grant renewal, Lewis Katz School of Medicine researchers to explore novel cell mechanism in heart injury and repair

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27562 shares
    Share 11022 Tweet 6889
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    971 shares
    Share 388 Tweet 243
  • Bee body mass, pathogens and local climate influence heat tolerance

    646 shares
    Share 258 Tweet 162
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    513 shares
    Share 205 Tweet 128
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    479 shares
    Share 192 Tweet 120
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Asian Dust Worsens Cedar Pollen Allergy in Mice
  • Nurses’ Insights on Implementing Patient-Reported Outcomes
  • Enhancing STEAM Learning: 6E Model and Creative Strategies
  • Gamifying Embryology: Revolutionizing Medical Education Outcomes

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm Follow' to start subscribing.

Join 5,186 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine