Sunday, August 17, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Biology

Tracking animals without markers in the wild

May 28, 2024
in Biology
Reading Time: 4 mins read
0
Tracking animals without markers in the wild
66
SHARES
596
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Two pigeons are pecking grains in a park in Konstanz. A third pigeon flies in. There are four cameras in the immediate vicinity. Doctoral students Alex Chan and Urs Waldmann from the Cluster of Excellence Collective Behaviour at the University of Konstanz are filming the scene. After an hour, they return with the footage to their office to analyze it with a computer vision framework for posture estimation and identity tracking. The framework detects and draws a box around all pigeons. It records central body parts and determines their posture, their position, and their interaction with the other pigeons around them. All of this happened without any markers being attached to pigeons or any need for human being called in to help. This would not have been possible just a few years ago.

Two pigeons are pecking grains in a park in Konstanz. A third pigeon flies in. There are four cameras in the immediate vicinity. Doctoral students Alex Chan and Urs Waldmann from the Cluster of Excellence Collective Behaviour at the University of Konstanz are filming the scene. After an hour, they return with the footage to their office to analyze it with a computer vision framework for posture estimation and identity tracking. The framework detects and draws a box around all pigeons. It records central body parts and determines their posture, their position, and their interaction with the other pigeons around them. All of this happened without any markers being attached to pigeons or any need for human being called in to help. This would not have been possible just a few years ago.

3D-MuPPET, a framework to estimate and track 3D poses of up to 10 pigeons
Markerless methods for animal posture tracking have been rapidly developed recently, but frameworks and benchmarks for tracking large animal groups in 3D are still lacking. To overcome this gap, researchers from the Cluster of Excellence Collective Behaviour at the University of Konstanz and the Max Planck Institute of Animal Behavior present 3D-MuPPET, a framework to estimate and track 3D poses of up to 10 pigeons at interactive speed using multiple camera views. The related publication was recently published in the International Journal of Computer Vision (IJCV).

Important milestone in animal posture tracking and automatic behavioural analysis
Urs Waldmann and Alex Chan recently finalized a new method, called 3D-MuPPET, which stands for 3D Multi-Pigeon Pose Estimation and Tracking. 3D-MuPPET is a computer vision framework for posture estimation and identity tracking for up to 10 individual pigeons from 4 camera views, based on data collected both in captive environments and even in the wild. “We trained a 2D keypoint detector and triangulated points into 3D, and also show that models trained on single pigeon data work well with multi-pigeon data,” explains Urs Waldmann. This is a first example of 3D animal posture tracking for an entire group of up to 10 individuals. Thus, the new framework provides a concrete method for biologists to create experiments and measure animal posture for automatic behavioural analysis. “This framework is an important milestone in animal posture tracking and automatic behavioural analysis”, as Alex Chan and Urs Waldmann say.

Framework can be used in the wild
In addition to tracking pigeons indoors, the framework is also extended to pigeons in the wild. “Using a model that can identify the outline of any object in an image called the Segment Anything Model, we further trained a 2D keypoint detector with a masked pigeon from the captive data, then applied the model to pigeon videos outdoors without any extra model finetuning”, states Alex Chan. 3D-MuPPET presents one of the first case-studies on how to transition from tracking animals in captivity towards tracking animals in the wild, allowing fine-scaled behaviours of animals to be measured in their natural habitats. The developed methods can potentially be applied across other species in future work, with potential application for large scale collective behaviour research and species monitoring in a non-invasive way.

3D-MuPPET showcases a powerful and flexible framework for researchers who would like to use 3D posture reconstruction for multiple individuals to study collective behaviour in any environments or species. As long as a multi-camera setup and a 2D posture estimator is available, the framework can be applied to track 3D postures of any animals.

 

 

Key facts:

  • Publication: Waldmann, U. & Chan, A.H.H. et al. 3D-MuPPET: 3D Multi-Pigeon Pose Estimation and Tracking. Int J Comput Vis (2024).
    DOI: https://doi.org/10.1007/s11263-024-02074-y.
  • The article is part of a special issue on “Computer Vision Approaches for Animal Tracking and Modeling 2023” in IJCV.
  • The framework is based on the 3D-POP dataset and the I-MuPPET
    framework, developed by researchers in the Cluster of Excellence
    Collective Behaviour.
  • Alex Chan and Urs Waldmann are doctoral students in the field of biology and computer science at the Cluster of Excellence Collective Behaviour. Senior author Fumihiro Kano is a junior group leader at the Cluster of Excellence Collective Behaviour.
  • The Centre for the Advanced Study of Collective Behaviour at the University of Konstanz is a global hotspot for the study of collective behaviour across a wide range of species and across scales of organization. It is a Cluster of Excellence within the framework of the German Excellence Strategy of the federal and state governments.

 

 

 

Note to editors:

Watch a video about 3D-MuPPET here:

 

You can download photos here:

 

 

Caption: 3D-MuPPET offers a computer vision framework for 3D posture estimation and identity tracking of animals in indoor environments as well as in the wild.

Copyright: Alex Chan

 

 

 



DOI

10.1007/s11263-024-02074-y

Share26Tweet17
Previous Post

Exploring chromatin accessibility and its diagnostic potential in cancer through the utilization of cell-free DNA

Next Post

Air and noise pollution exposure in early life and mental health from adolescence to young adulthood

Related Posts

blank
Biology

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank
Biology

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025
blank
Biology

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025
blank
Biology

Opposing ATPases and ALKBH1 Shape Chromatin, Stress Response

August 15, 2025
blank
Biology

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
blank
Biology

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

August 15, 2025
Next Post
Air and noise pollution exposure in early life and mental health from adolescence to young adulthood

Air and noise pollution exposure in early life and mental health from adolescence to young adulthood

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27534 shares
    Share 11010 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    948 shares
    Share 379 Tweet 237
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Academic Leaders Embrace AI in Administrative Development
  • Evaluating Eco-City Climate Impact on Tianjin Real Estate
  • Seismic Analysis of Masonry Facades via Imaging
  • Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading