Saturday, August 16, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Mathematics

Toxic chemicals can be detected with new AI method

May 2, 2024
in Mathematics
Reading Time: 4 mins read
0
Model architecture for the AI method that predicts toxicity of chemicals
66
SHARES
597
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Swedish researchers at Chalmers University of Technology and the University of Gothenburg have developed an AI method that improves the identification of toxic chemicals – based solely on knowledge of the molecular structure. The method can contribute to better control and understanding of the ever-growing number of chemicals used in society, and can also help reduce the amount of animal tests.

Model architecture for the AI method that predicts toxicity of chemicals

Credit: Chalmers University of Technology and the University of Gothenburg

Swedish researchers at Chalmers University of Technology and the University of Gothenburg have developed an AI method that improves the identification of toxic chemicals – based solely on knowledge of the molecular structure. The method can contribute to better control and understanding of the ever-growing number of chemicals used in society, and can also help reduce the amount of animal tests.

The use of chemicals in society is extensive, and they occur in everything from household products to industrial processes. Many chemicals reach our waterways and ecosystems, where they may cause negative effects on humans and other organisms. One example is PFAS, a group of problematic substances which has recently been found in concerning concentrations in both groundwater and drinking water. It has been used, for example, in firefighting foam and in many consumer products.

Negative effects for humans and the environment arise despite extensive chemical regulations, that often require time-consuming animal testing to demonstrate when chemicals can be considered as safe. In the EU alone, more than two million animals are used annually to comply with various regulations. At the same time, new chemicals are developed at a rapid pace, and it is a major challenge to determine which of these that need to be restricted due to their toxicity to humans or the environment.

Valuable help in the development of chemicals

The new method developed by the Swedish researchers utilises artificial intelligence for rapid and cost-effective assessment of chemical toxicity. It can therefore be used to identify toxic substances at an early phase and help reduce the need for animal testing.

“Our method is able to predict whether a substance is toxic or not based on its chemical structure. It has been developed and refined by analysing large datasets from laboratory tests performed in the past. The method has thereby been trained to make accurate assessments for previously untested chemicals,” says Mikael Gustavsson, researcher at the Department of Mathematical Sciences at Chalmers University of Technology, and at the Department of Biology and Environmental Sciences at the University of Gothenburg.

“There are currently more than 100,000 chemicals on the market, but only a small part of these have a well-described toxicity towards humans or the environment. To assess the toxicity of all these chemicals using conventional methods, including animal testing, is not practically possible. Here, we see that our method can offer a new alternative,” says Erik Kristiansson, professor at the Department of Mathematical Sciences at Chalmers and at the University of Gothenburg.

The researchers believe that the method can be very useful within environmental research, as well as for authorities and companies that use or develop new chemicals. They have therefore made it open and publicly available.

Broader and more accurate than today’s computational tools

Computational tools for finding toxic chemicals already exist, but so far, they have had too narrow applicability domains or too low accuracy to replace laboratory tests to any greater extent. In the researchers’ study, they compared their method with three other, commonly used, computational tools, and found that the new method has both a higher accuracy and that it is more generally applicable.

“The type of AI we use is based on advanced deep learning methods,” says Erik Kristiansson. “Our results show that AI-based methods are already on par with conventional computational approaches, and as the amount of available data continues to increase, we expect AI methods to improve further. Thus, we believe that AI has the potential to markedly improve computational assessment of chemical toxicity.”

The researchers predict that AI systems will be able to replace laboratory tests to an increasingly greater extent.

“This would mean that the number of animal experiments could be reduced, as well as the economic costs when developing new chemicals. The possibility to rapidly prescreen large and diverse bodies of data can therefore aid the development of new and safer chemicals and help find substitutes for toxic substances that are currently in use. We thus believe that AI-based methods will help reduce the negative impacts of chemical pollution on humans and on ecosystem services,” says Erik Kristiansson.

More about: the new AI method

The method is based on transformers, an AI model for deep learning that was originally developed for language processing. Chat GPT – whose abbreviation means Generative Pretrained Transformer – is one example of the applications.

The model has recently also proved highly efficient at capturing information from chemical structures. Transformers can identify properties in the structure of molecules that cause toxicity, in a more sophisticated way than has been previously possible.

Using this information, the toxicity of the molecule can then be predicted by a deep neural network. Neural networks and transformers belong to the type of AI that continuously improves itself by using training data – in this case, large amounts of data from previous laboratory tests of the effects of thousands of different chemicals on various animals and plants.

 

More about: the research

The study, Transformers enable accurate prediction of acute and chronic chemical toxicity in aquatic organisms, has been published in Science Advances. It was carried out by Mikael Gustavsson and Erik Kristiansson at Chalmers University of Technology and the University of Gothenburg, Styrbjörn Käll, Juan S. Inda-Diaz, and Sverker Molander at Chalmers University of Technology, and Patrik Svedberg, Jessica Coria and Thomas Backhaus at the University of Gothenburg.



Journal

Science Advances

DOI

10.1126/sciadv.adk6669

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Transformers enable accurate prediction of acute and chronic chemical toxicity in aquatic organisms

Article Publication Date

6-Mar-2024

Share26Tweet17
Previous Post

Gene signatures from tissue-resident T cells as a predictive tool for melanoma patients

Next Post

City of Hope to present new research at the American Society of Clinical Oncology (ASCO) Annual Meeting 2024, highlighting promising data on stem cell transplantation, blood cancers and supportive care oncology interventions

Related Posts

blank
Mathematics

Students’ Imaging Tool Enables Sharper Detection, Earlier Warnings from Lab to Space

August 15, 2025
blank
Mathematics

Meta-Analysis Suggests Helicobacter pylori Eradication Could Increase Risk of Reflux Esophagitis

August 14, 2025
blank
Mathematics

Innovative Few-Shot Learning Model Boosts Accuracy in Crop Disease Detection

August 13, 2025
blank
Mathematics

Scientists Unveil Mathematical Model Explaining ‘Matrix Tides’ and Complex Wave Patterns in Qiantang River

August 12, 2025
blank
Mathematics

Enhancing Medical Imaging with Advanced Pixel-Particle Analogies

August 12, 2025
blank
Mathematics

Brain-Inspired Devices Become Reality Through Neuromorphic Technology and Machine Learning

August 12, 2025
Next Post
City of Hope to present new research at the American Society of Clinical Oncology (ASCO) Annual Meeting 2024, highlighting promising data on stem cell transplantation, blood cancers and supportive care oncology interventions

City of Hope to present new research at the American Society of Clinical Oncology (ASCO) Annual Meeting 2024, highlighting promising data on stem cell transplantation, blood cancers and supportive care oncology interventions

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27534 shares
    Share 11010 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    948 shares
    Share 379 Tweet 237
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Saudi Archaeology and Predicting Pro-Environmental Intentions
  • Breakthrough Cancer Drug Eradicates Aggressive Tumors in Clinical Trial
  • Study Reveals Thousands of Children in Mental Health Crisis Face Prolonged Stays in Hospital Emergency Rooms
  • Advancing Precision Cancer Therapy Through Tumor Electrophysiology Insights

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading