Monday, September 8, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Biology

predicting colonization outcomes of complex microbial communities by machine-learning models

August 29, 2024
in Biology
Reading Time: 2 mins read
0
66
SHARES
597
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Microbial communities are constantly exposed to the invasion of exogenous species, which can significantly alter their composition and function. The capacity of a microbial community to resist invasion is regarded as an emergent property resulting from the complex interactions among its constituent species.

The ability to predict and modify colonization outcomes (i.e., prevent the engraftment of pathogens and promote the engraftment of probiotics) is crucial for personalized microbiota-based interventions in nutrition and medicine. Despite accumulating empirical studies, predicting colonization outcomes in complex communities remains a fundamental challenge due to limited knowledge of interspecies interactions.

Recently, a research team led by Prof. DAI Lei from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences, in collaboration with other researchers, developed a data-driven approach that is independent of any dynamic models to predict the colonization outcomes of exogenous species in complex microbial communities without detailed knowledge of the underlying ecological and biochemical processes.

The study was published in Nature Communications on March 16.

In this study, the researchers systematically evaluated the proposed data-driven approach using synthetic data generated from classical ecological dynamical models and in vitro human stool-derived microbial communities. They found that, with a sufficient sample size in the training data (on the order of ~O(N)), colonization outcomes (i.e., whether an exogenous species can establish and what its abundance would be if it does establish) can be predicted using machine learning models.

The researchers then generated large-scale datasets with in vitro experimental outcomes of two representative species colonizing human stool-derived microbial communities. They validated that machine learning models could also predict colonization outcomes in experiments (AUROC > 0.8).

Furthermore, the researchers used machine learning models to identify species with significant colonization impacts and empirically demonstrated that the introduction of highly interacting species can substantially modify colonization outcomes.

“Our results show that the colonization outcomes of complex microbial communities can be predicted via data-driven approaches and are tunable,” said Prof. DAI.

“Data-driven methodologies are powerful tools for biologists. Combined with advancements in predicting the characteristics of complex biomolecules, I anticipate that this approach will precipitate a paradigm shift in studying the stability and function of intricate ecological systems and facilitate significant applications in healthcare and agriculture,” DAI added.

Share26Tweet17
Previous Post

Persistent neighborhood poverty and breast cancer outcomes

Next Post

Machine learning predicts which patients will continue taking opioids after hand surgery

Related Posts

Biology

Vientovirus Protein Mimics Autoantigens, Fuels Sjögren’s Disease

September 8, 2025
blank
Biology

Proteolytic Inactivation Follows Genomic Hypomethylation in Pseudomonas

September 8, 2025
blank
Biology

Starter Cultures in Cocoa Fermentation: Flavor Impact

September 8, 2025
blank
Biology

Leaf Beetle Evolution Boosts Defense Against Shared Wasp

September 8, 2025
blank
Biology

Evaluating Impact of Environment on Kenyan Donkey Welfare

September 8, 2025
blank
Biology

Mountain Frogs’ Niche Adaptation to Climate Change

September 8, 2025
Next Post

Machine learning predicts which patients will continue taking opioids after hand surgery

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27545 shares
    Share 11015 Tweet 6884
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    961 shares
    Share 384 Tweet 240
  • Bee body mass, pathogens and local climate influence heat tolerance

    643 shares
    Share 257 Tweet 161
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    510 shares
    Share 204 Tweet 128
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    313 shares
    Share 125 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Vientovirus Protein Mimics Autoantigens, Fuels Sjögren’s Disease
  • Spinning Particles Orbit Magnetized Black Hole

  • Frailty Drives Gut Microbiome Imbalance and Heightens Post-Surgical GI Risks
  • Researchers Discover Breakthrough Method to Separate Economic Growth from Pollution in Developing Nations

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm Follow' to start subscribing.

Join 5,183 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine