Thursday, November 6, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Technology and Engineering

New UAV-based method enhances wheat uniformity monitoring and yield prediction

July 1, 2024
in Technology and Engineering
Reading Time: 4 mins read
0
Fig.1
65
SHARES
593
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

A research team has developed an innovative method to quantify wheat uniformity using unmanned aerial vehicle (UAV) imaging technology. This method estimates leaf area index (LAI), SPAD, fractional vegetation cover, and plant height, calculating 20 uniformity indices throughout the growing season. Pielou’s index of LAI showed the strongest correlation with yield and biomass. This approach enables effective monitoring of wheat uniformity, offering new insights for yield and biomass prediction, and has potential applications in crop management and future wheat breeding programs.

Fig.1

Credit: The authors

A research team has developed an innovative method to quantify wheat uniformity using unmanned aerial vehicle (UAV) imaging technology. This method estimates leaf area index (LAI), SPAD, fractional vegetation cover, and plant height, calculating 20 uniformity indices throughout the growing season. Pielou’s index of LAI showed the strongest correlation with yield and biomass. This approach enables effective monitoring of wheat uniformity, offering new insights for yield and biomass prediction, and has potential applications in crop management and future wheat breeding programs.

Wheat is a crucial global crop, but current population growth, extreme weather, and climate change have increased demands on wheat production. Uniform population structure is key for high yields, but uneven field conditions lead to competition among plants, preventing uniformity. Traditional methods for measuring uniformity are labor-intensive and inefficient. Current research focuses on spatial uniformity of individual plants and lacks multi-trait assessments across growth stages.

A study (DOI: 10.34133/plantphenomics.0191) published in Plant Phenomics on 18 Jun 2024, aims to develop a comprehensive method for assessing wheat uniformity throughout its growth stages, using UAV-based phenotyping to evaluate its impact on yield and biomass.

This research utilized UAV-based imaging technology to estimate wheat agronomic parameters: SPAD, LAI, and plant height (PH). The BPNN model demonstrated high accuracy for LAI (R²=0.889) and SPAD (R²=0.804), and the PH estimation from 3D point clouds also showed strong accuracy (R²=0.812). These accurate estimations provided a foundation for calculating uniformity indices. The study revealed that uniformity indices for LAI, SPAD, FVC, and PH varied dynamically across growth stages, with indices generally stabilizing after heading. Furthermore, correlation analyses uncovered strong correlations between specific indices, such as LJ for LAI, and yield (r=-0.760) and biomass (r=-0.801). Multiple linear regression models that incorporated these uniformity indices outperformed models based on mean values, resulting in improved accuracy for yield (R²=0.616) and biomass (R²=0.798) predictions. This method effectively monitors wheat uniformity and provides insights for enhancing crop yield and biomass estimation.

According to the study’s lead researcher, Dong Jiang, “The proposed uniformity monitoring method can be used to effectively evaluate the temporal and spatial variations in wheat uniformity and can provide new insights into the prediction of yield and biomass.”

In summary, this study developed a UAV-based method to monitor wheat uniformity. Models using uniformity indices demonstrated higher accuracy than those using mean values, offering valuable insights for yield and biomass prediction. Looking ahead, different uniformity indices can improve crop management and breeding. Future research should explore the relationship between uniformity and productivity across growth stages and validate this method for other crops to enhance agricultural practices.

###

References

DOI

10.34133/plantphenomics.0191

Original Source URL

https://doi.org/10.34133/plantphenomics.0191

Authors

Yandong Yang 1†, Qing Li2†, Yue Mu 1*, Haitao Li1, Hengtong Wang 2,Seishi Ninomiya1,3*, and Dong Jiang2*

Affications

1 Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center for Modern CropProduction co-sponsored by Province and Ministry, State Key Laboratory of Crop Genetics and GermplasmEnhancement and Utilization, Nanjing 210095, China.

2 College of Agriculture, National TechniqueInnovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry ofAgriculture, Nanjing Agricultural University, Nanjing 210095, China.

3 Graduate School of Agriculturaland Life Sciences, The University of Tokyo, Nishi-Tokyo, Tokyo 188-0002, Japan.

Funding information

This research was supported by the National Key R&D Program of China (no. 2022YFE0116200), the “JBGS” Project of Seed Industry Revitalization in Jiangsu Province (JBGS [2021] 007), the National Natural Science Foundation of China (32272213, 32030076, U1803235, and 32021004), the Fundamental Research Funds for the Central Universities (XUEKEN2023013), and the National Key Research and Development Program of China (2020YFE0202900).

About Plant Phenomics

Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. Editorial decisions and scientific activities pursued by the journal’s Editorial Board are made independently, based on scientific merit and adhering to the highest standards for accurate and ethical promotion of science. These decisions and activities are in no way influenced by the financial support of NAU, NAU administration, or any other institutions and sponsors. The Editorial Board is solely responsible for all content published in the journal. To learn more about the Science Partner Journal program, visit the SPJ program homepage.



Journal

Plant Phenomics

DOI

10.34133/plantphenomics.0191

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

UAV-Assisted Dynamic Monitoring of Wheat Uniformity toward Yield and Biomass Estimation

Article Publication Date

18-Jun-2024

COI Statement

The authors declare that they have no competing interests.

Share26Tweet16
Previous Post

From sleep to alertness: claustrum’s key role in engagement uncovered

Next Post

New study shows high human impact on ecosystems in the Åland Archipelago

Related Posts

blank
Technology and Engineering

Bonding Strengths: Hydroxyapatite Coated Gutta Percha Insights

November 6, 2025
blank
Technology and Engineering

Rice University and Houston Methodist Team Up to Explore Brain-Implant Interface with Support from Dunn Foundation Grant

November 6, 2025
blank
Technology and Engineering

Worcester Polytechnic Institute to spearhead $5.2 Million State Initiative for Central Massachusetts BioHub Development

November 6, 2025
blank
Technology and Engineering

Texas Tech Researchers Unveil Innovative Acceleration Method for Crop Development

November 6, 2025
blank
Technology and Engineering

Study Reveals China Dominates Remote Sensing Research with 47% Output, While U.S. Trails at 9%

November 6, 2025
blank
Technology and Engineering

Scientists Unveil Revolutionary Materials to Propel the Advancement of Light-Based Computing

November 6, 2025
Next Post
Sample collecting

New study shows high human impact on ecosystems in the Åland Archipelago

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27577 shares
    Share 11028 Tweet 6892
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    985 shares
    Share 394 Tweet 246
  • Bee body mass, pathogens and local climate influence heat tolerance

    651 shares
    Share 260 Tweet 163
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    519 shares
    Share 208 Tweet 130
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    487 shares
    Share 195 Tweet 122
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • NIH Awards Grant to Develop Enhanced Delivery Systems for School-Based Substance Use Prevention and Treatment Programs
  • Woodpeckers Grunt Like Tennis Stars While Drilling, Scientists Discover
  • Bonding Strengths: Hydroxyapatite Coated Gutta Percha Insights
  • Phospholipid Scramblases Drive Tumor Growth Via PS

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm Follow' to start subscribing.

Join 5,189 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine