Thursday, August 7, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Technology and Engineering

Mass General study identifies an AI model that can accurately assess PTSD in postpartum women

April 18, 2024
in Technology and Engineering
Reading Time: 4 mins read
0
65
SHARES
592
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Key Takeaways:

Key Takeaways:

  • An artificial intelligence model combined with a trained machine learning algorithm was found by Mass General researchers and collaborators to accurately identify childbirth-related post-traumatic stress disorder (CB-PTSD).
  • The findings could set the stage for a highly effective, low-cost, and readily accessible way to screen for the disorder, which affects up to 8M women worldwide.
  • Interventions could then be offered to the mother to reduce the trauma associated with the birthing process.

BOSTON – A generative artificial intelligence (AI) model that can analyze the narrative accounts of women who have undergone recent childbirth has shown the ability to accurately screen for post-traumatic stress disorder (CB-PTSD), a study by Massachusetts General Hospital (MGH), a founding member of the Mass General Brigham healthcare system has found.

By exploring the capabilities and shortcomings of several models from OpenAI, including ChatGPT, the researchers identified a version that offers rich insights into maternal mental health following traumatic childbirth.

The model can fit seamlessly into routine obstetric care and could potentially be harnessed to assess other mental health disorders. The results of the study were published in Scientific Reports.

“Evaluation of PTSD related to traumatic birth currently relies on extensive clinician evaluation, which fails to meet the urgent need for a rapid, low-cost assessment strategy,” says Sharon Dekel, PhD, director of MGH’s Postpartum Traumatic Stress Disorders Research Program, and senior author of the study.

“The use of brief patient narratives of childbirth analyzed by AI’s text-based computational methods could become an efficient, low-cost, and patient-friendly strategy for detecting CB-PTSD after a traumatic birth and with more research this tool may potentially aid in identifying women at risk for CB-PTSD before the condition fully develops.”

For an estimated eight million women a year globally, childbirth that is traumatic and/or medically complicated is expected to trigger post-traumatic stress disorder, a condition historically has been associated with military combat or severe sexual assault.

In recent years, childbirth has become acknowledged as a significant PTSD trigger which, if left untreated, can impair the health of both the mother and child and result in significant societal costs.

In previous studies, Dekel’s lab found evidence that brief psychological interventions delivered soon after traumatic childbirth can reduce maternal childbirth-related PTSD symptoms.

In their latest study, Dekel in collaboration with first author Alon Bartal, PhD, of Bar-Ilan University in Israel, investigated the effectiveness of artificial intelligence and related machine learning (ML) analysis strategies to detect CB-PTSD.

Specifically, they evaluated the performance of different large language models (LLMs) and variations of ChatGPT and their ability to extract novel insights from text-based data sets derived from the brief narrative descriptions by postpartum women of their childbirth experience.

As part of their work, the team collected short narrative accounts from 1,295 women who had recently given birth.

The study focused on an OpenAI model known as text-embeddings-ada-002, which converted narrative data from the personal accounts of women with and without probable CB-PTSD to a numerical format that was then analyzed by a trained machine learning algorithm developed by the team.

Researchers showed this model had superior performance in identifying postpartum traumatic stress compared to other ChatGPT and large language models, which are typically trained on huge volumes of data allowing them to understand, analyze and interpret natural language.

“The reliance of the ML model using childbirth narrative input from the Open AI model as its exclusive data source presents an efficient mechanism for data collection during the vulnerable postpartum period, demonstrating 85 percent sensitivity and 75 percent specificity in identifying CB-PTSD cases,” notes Dekel.

 “Moreover, the model we developed could potentially improve accessibility to CB-PTSD screening and diagnosis by fitting seamlessly into routine obstetric care and providing a foundation for commercial product development and mainstream adoption.”

Dekel, whose research program is dedicated to exploring women’s mental health following traumatic childbirth, underscores the clinical benefits of using a pre-trained large language model to assess potential PTSD in new mothers.

“Early intervention is essential to prevent the progression of this disorder to chronic stages, which can seriously complicate treatment,” the MGH investigator points out.

“Our unique approach could introduce an innovative and cost-effective screening strategy for identifying high-risk women and facilitating timely treatment. It may also holds promise for assessing other mental health disorders, and consequently improving patient outcomes.”

The emergence of artificial intelligence tools in health has been groundbreaking and has the potential to positively reshape the continuum of care. Mass General Brigham, as one of the nation’s top integrated academic health systems and largest innovation enterprises, is leading the way in conducting rigorous research on new and emerging technologies to inform the responsible incorporation of AI into care delivery, workforce support, and administrative processes. 

Dekel is a psychologist at MGH, and assistant professor of Psychology at Harvard Medical School. Bartal is an assistant professor of Information Systems at Bar-Ilan University in Israel. Co-authors in the Dekel Laboratory include Kathleen Jagodnik, PhD, a Harvard research fellow, and Sabrina Chan, a clinical research coordinator.

Dekel was supported by funds from the NIH (Eunice Kennedy Shriver National Institute of Child Health and Human Development, grants R01HD108619, R21HD109546, and R21HD100817).

About the Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The Mass General Research Institute conducts the largest hospital-based research program in the nation, with annual research operations of more than $1 billion and comprises more than 9,500 researchers working across more than 30 institutes, centers and departments. MGH is a founding member of the Mass General Brigham healthcare system.



Journal

Scientific Reports

DOI

10.1038/s41598-024-54242-2

Method of Research

Experimental study

Subject of Research

People

Article Title

AI and narrative embeddings detect PTSD following childbirth via birth stories

Article Publication Date

11-Apr-2024

Share26Tweet16
Previous Post

Twinkle twinkle baby star, ‘sneezes’ tell us how you are

Next Post

On World Parkinson’s Day, a new theory emerges on the disease’s origins and spread

Related Posts

Technology and Engineering

Enhanced AEMs Boost Stability and Conductivity

August 7, 2025
blank
Medicine

Data-Driven Discovery of Super-Adhesive Hydrogels

August 7, 2025
blank
Technology and Engineering

White Matter Lesions Signal Cerebral Palsy Risk

August 7, 2025
blank
Technology and Engineering

Lanthanum Doping Enhances Co-free Li-ion Battery Cathodes

August 7, 2025
blank
Medicine

RNA N-Glycosylation Drives Immune Evasion, Cleanup

August 7, 2025
blank
Medicine

Unique and Diverse Microbiomes Within Trees

August 7, 2025
Next Post
New Model of How Environmental Toxicants May Trigger Parkinson's Disease

On World Parkinson’s Day, a new theory emerges on the disease’s origins and spread

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27530 shares
    Share 11009 Tweet 6881
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    942 shares
    Share 377 Tweet 236
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    506 shares
    Share 202 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    310 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • First Enterocytozoon bieneusi Found in Turkish Wrestling Camels
  • CMTM3 and SSTR2 Expression Differs in Colon Tumors
  • Pediatric Lung Transplants in China: 2019–2023 Trends
  • Onion Peel Reduces Collagen, Epinephrine Thrombosis in Rats

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading