Friday, August 22, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Chemistry

Machine learning accelerates the chase for safer, better batteries

May 31, 2024
in Chemistry
Reading Time: 4 mins read
0
66
SHARES
596
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

As the clean transition drives uptake of electric vehicles and energy storage for an electricity grid with ever greater dependence on variable renewable energy sources such as wind and solar, the danger from battery fires grows as well. To limit this risk while improving battery performance, the next generation of batteries is likely to depend on new solid-state electrolytes, but research has been hampered by the sheer volume of material options and the parameters involved.

Machine learning, however, is coming to the rescue. A group of materials scientists have developed a new, dynamic database of hundreds of solid-state electrolytes to which they have applied artificial intelligence techniques that are already steering research in better directions.

A paper describing their approach was published in the journal Nano Materials Science on September 10, 2023.

ADVERTISEMENT

Organic solvents are commonly used as electrolytes–those substances, usually liquids or gels, that facilitate the movement of charged particles, or ions, between the positive and negative electrodes – in many rechargeable batteries. This type of solvent provides good conductivity and allows for the efficient transport of ions between the electrodes, but a range of safety and performance concerns means that battery researchers have long been on the hunt for alternative electrolyte materials.

In particular, organic solvents can be flammable and may lead to thermal runaway reactions, causing fires or explosions. Additionally, organic solvents can be prone to chemical decomposition, which can result in the formation of gas and the breakdown of the electrolyte over time, reducing the battery’s performance and lifespan. In addition, they sometimes suffer from a limited range of voltages that the battery can operate within.

One alternative pathway has all-solid-state batteries (ASSBs), in which the traditional liquid or gel organic solvent is replaced by a solid electrolyte – eliminating the problem of leakage and thus explosion. Not only do these solid-state electrolytes improve on safety, they also deliver higher energy density, and – potentially – faster charging times.

However, the journey to finding solid state electrolytes, or SSEs, with high ionic conductivity – the ability for ions to move through the battery and produce a current – has been riddled with challenges, primarily due to their complex structures and the relationship between those structures and performance. So far, only SSEs with sluggish ion migration have been identified. Without high-performance SSEs, the development of ASSBs has been severely hampered.

“Making matters worse is the sheer number of SSEs to choose from,” said Hao Li, a materials scientist with the Advanced Institute for Materials Research at Tohoku University and the corresponding author of the paper. “There are hundreds of possibilities, and it’s a real challenge for researchers to tackle such a volume of options while keeping track of the many various parameters of optimal performance.”

So the team developed an experimental dynamic database, the Dynamic Database of Solid-State Electrolyte (DDSE), that initially contained over 600 potential solid-state electrolyte materials, spanning a wide range of operating temperatures and encompassing various cations and anions (positive and negative ions), to explore the relationships among the different variables.

A dynamic database is a type of database that is designed to be easily updated and modified frequently, allowing for real-time changes and additions to the data it contains. This type of database is often used in situations where the information is constantly evolving. In this case, the DDSE is continuously updated with new experimental data. The database is updated weekly and as of January 2024, contained over 1000 materials.

The researchers then applied machine learning to the DDSE to overcome the limitations of both human analysis and the extraordinary computational expense of theoretical calculations. In the absence of machine learning, researchers have struggled to computationally wrangle the large atomic system of SSEs as well as the complexity of the chemical reactions involved.

By leveraging machine learning, researchers can make better predictions about novel solid-state electrolyte materials at much lower computational (and financial) expense, with minimum waste of time compared to previous trial-and-error attempts at SSE design.

In so doing, they have begun to tease out the intricate relationships among multiple different variables, including ion transport, composition, activation energy (the amount of energy required to kick off a chemical reaction), and conductivity, enabling the development of a new set of guidelines for the design of SSEs. The researchers have already identified the development and performance trends of SSEs across various classes of materials, as well as performance bottlenecks for each class of SSEs.

The DDSE was also designed with a user-friendly interface to enable other battery and materials scientists beyond the original team to update and use it themselves.

About the World Premier International Research Center Initiative (WPI)

The WPI program was launched in 2007 by Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) to foster globally visible research centers boasting the highest standards and outstanding research environments. Numbering more than a dozen and operating at institutions throughout the country, these centers are given a high degree of autonomy, allowing them to engage in innovative modes of management and research. The program is administered by the Japan Society for the Promotion of Science (JSPS).

See the latest research news from the centers at the WPI News Portal:
Main WPI program site:  www.jsps.go.jp/english/e-toplevel

Advanced Institute for Materials Research (AIMR)
Tohoku University

Establishing a World-Leading Research Center for Materials Science
AIMR aims to contribute to society through its actions as a world-leading research center for materials science and push the boundaries of research frontiers. To this end, the institute gathers excellent researchers in the fields of physics, chemistry, materials science, engineering, and mathematics and provides a world-class research environment.
 

 

Share26Tweet17
Previous Post

BU study finds policy makers’ use of in-hospital mortality as a sepsis quality metric may unfairly penalize safety-net hospitals

Next Post

Revolutionizing interaction recognition: The power of merge-and-split graph convolutional networks

Related Posts

Chemistry

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

August 22, 2025
blank
Chemistry

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

August 22, 2025
blank
Chemistry

NME1 Enzyme Catalyzes Its Own Oligophosphorylation

August 22, 2025
blank
Chemistry

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025
blank
Chemistry

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 21, 2025
blank
Chemistry

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

August 21, 2025
Next Post
Revolutionizing interaction recognition: The power of merge-and-split graph convolutional networks

Revolutionizing interaction recognition: The power of merge-and-split graph convolutional networks

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27536 shares
    Share 11011 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    951 shares
    Share 380 Tweet 238
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    508 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Signaling Pathways Drive Cisplatin Resistance via SOX2
  • Study Finds No Link Between Animal Protein Consumption and Increased Mortality Risk
  • TNF and TLR2 Genes Linked to Schizophrenia Blood Levels
  • Ovarian Cancer Trends in War-Torn Syria

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading