Friday, August 15, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Bussines

Large language models don’t behave like people, even though we may expect them to

July 23, 2024
in Bussines
Reading Time: 4 mins read
0
65
SHARES
592
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

CAMBRIDGE, MA – One thing that makes large language models (LLMs) so powerful is the diversity of tasks to which they can be applied. The same machine-learning model that can help a graduate student draft an email could also aid a clinician in diagnosing cancer.

CAMBRIDGE, MA – One thing that makes large language models (LLMs) so powerful is the diversity of tasks to which they can be applied. The same machine-learning model that can help a graduate student draft an email could also aid a clinician in diagnosing cancer.

However, the wide applicability of these models also makes them challenging to evaluate in a systematic way. It would be impossible to create a benchmark dataset to test a model on every type of question it can be asked.

In a new paper, MIT researchers took a different approach. They argue that, because humans decide when to deploy large language models, evaluating a model requires an understanding of how people form beliefs about its capabilities.

For example, the graduate student must decide whether the model could be helpful in drafting a particular email, and the clinician must determine which cases would be best to consult the model on.

Building off this idea, the researchers created a framework to evaluate an LLM based on its alignment with a human’s beliefs about how it will perform on a certain task.

They introduce a human generalization function — a model of how people update their beliefs about an LLM’s capabilities after interacting with it. Then, they evaluate how aligned LLMs are with this human generalization function.

Their results indicate that when models are misaligned with the human generalization function, a user could be overconfident or underconfident about where to deploy it, which might cause the model to fail unexpectedly. Furthermore, due to this misalignment, more capable models tend to perform worse than smaller models in high-stakes situations.

“These tools are exciting because they are general-purpose, but because they are general-purpose, they will be collaborating with people, so we have to take the human in the loop into account,” says study co-author Ashesh Rambachan, assistant professor of economics and a principal investigator in the Laboratory for Information and Decision Systems (LIDS).

Rambachan is joined on the paper by lead author Keyon Vafa, a postdoc at Harvard University; and Sendhil Mullainathan, an MIT professor in the departments of Electrical Engineering and Computer Science and of Economics, and a member of LIDS. The research will be presented at the International Conference on Machine Learning.

Human generalization

As we interact with other people, we form beliefs about what we think they do and do not know. For instance, if your friend is finicky about correcting people’s grammar, you might generalize and think they would also excel at sentence construction, even though you’ve never asked them questions about sentence construction.

“Language models often seem so human. We wanted to illustrate that this force of human generalization is also present in how people form beliefs about language models,” Rambachan says.

As a starting point, the researchers formally defined the human generalization function, which involves asking questions, observing how a person or LLM responds, and then making inferences about how that person or model would respond to related questions.

If someone sees that an LLM can correctly answer questions about matrix inversion, they might also assume it can ace questions about simple arithmetic. A model that is misaligned with this function — one that doesn’t perform well on questions a human expects it to answer correctly — could fail when deployed.

With that formal definition in hand, the researchers designed a survey to measure how people generalize when they interact with LLMs and other people.

They showed survey participants questions that a person or LLM got right or wrong and then asked if they thought that person or LLM would answer a related question correctly. Through the survey, they generated a dataset of nearly 19,000 examples of how humans generalize about LLM performance across 79 diverse tasks.

Measuring misalignment

They found that participants did quite well when asked whether a human who got one question right would answer a related question right, but they were much worse at generalizing about the performance of LLMs.

“Human generalization gets applied to language models, but that breaks down because these language models don’t actually show patterns of expertise like people would,” Rambachan says.

People were also more likely to update their beliefs about an LLM when it answered questions incorrectly than when it got questions right. They also tended to believe that LLM performance on simple questions would have little bearing on its performance on more complex questions.

In situations where people put more weight on incorrect responses, simpler models outperformed very large models like GPT-4.

“Language models that get better can almost trick people into thinking they will perform well on related questions when, in actuality, they don’t,” he says.

One possible explanation for why humans are worse at generalizing for LLMs could come from their novelty — people have far less experience interacting with LLMs than with other people.

“Moving forward, it is possible that we may get better just by virtue of interacting with language models more,” he says.

To this end, the researchers want to conduct additional studies of how people’s beliefs about LLMs evolve over time as they interact with a model. They also want to explore how human generalization could be incorporated into the development of LLMs.

“When we are training these algorithms in the first place, or trying to update them with human feedback, we need to account for the human generalization function in how we think about measuring performance,” he says.

In the meanwhile, the researchers hope their dataset could be used a benchmark to compare how LLMs perform related to the human generalization function, which could help improve the performance of models deployed in real-world situations.

###

This research was funded, in part, by the Harvard Data Science Initiative and the Center for Applied AI at the University of Chicago Booth School of Business.



DOI

10.48550/arXiv.2406.01382

Share26Tweet16
Previous Post

JMIR XR and Spatial Computing is inviting submissions for a new theme issue titled “First Look: Early Research, Viewpoints, and Experiences with Apple Vision Pro in Health Care Settings”

Next Post

Potential epigenetic modifiers targeting the alteration of methylation in colorectal cancer

Related Posts

Bussines

Rewrite Prices and affordability of essential medicines in 72 low-, middle-, and high-income markets this news headline for the science magazine post

August 15, 2025
blank
Bussines

Rewrite Recycling process for dry processed cathodes developed this news headline for the science magazine post

August 15, 2025
blank
Bussines

Expertise Alone Does Not Ensure Success in CEO Appointments, Study Finds

August 14, 2025
blank
Bussines

CFRI’s 2025 MRS International Risk Conference Wraps Up with Worldwide Impact

August 14, 2025
blank
Bussines

Widespread COVID-19 Vaccination Proves Economically Beneficial, Particularly for Older Adults, Study Reveals

August 13, 2025
blank
Bussines

Study Finds Personalized Pricing May Backfire on Companies

August 12, 2025
Next Post

Potential epigenetic modifiers targeting the alteration of methylation in colorectal cancer

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27533 shares
    Share 11010 Tweet 6881
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    947 shares
    Share 379 Tweet 237
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    310 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Trapped in a Social Media Echo Chamber? A New Study Reveals How AI Can Offer an Escape
  • Rewrite FDA-approved MI cancer seek test enhances tumor profiling for precision oncology this news headline for the science magazine post
  • Rewrite Solved: 90-year-old mystery in quantum physics this news headline for the science magazine post
  • Rewrite Rethinking how medicine can approach aging this news headline for the science magazine post

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading