Sunday, August 31, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Technology and Engineering

KD-crowd: A knowledge distillation framework for learning from crowds

April 16, 2024
in Technology and Engineering
Reading Time: 2 mins read
0
The overall framework of KD-Crowd
66
SHARES
596
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Crowdsourcing efficiently delegates tasks to crowd workers for labeling, though their varying expertise can lead to errors. A key task is estimating worker expertise to infer true labels. However, the noise transition matrix-based methods for modeling worker expertise often overfit annotation noise due to oversimplification or inaccurate estimations.
To solve the problems, a research team led by Shao-Yuan LI published their new research on 12 Mar 2024 in Frontiers of Computer Science co-published by Higher Education Press and Springer Nature.
The team proposed a knowledge distillation-based framework KD-Crowd, which leverages noise-model-free learning techniques to refine crowdsourcing learning. Besides, the team also proposed one f-mutual information gain-based knowledge distillation loss to prevent the student from memorizing serious mistakes of the teacher model. Compared with the existing research results, the proposed method demonstrated both on synthetic and real-world data, attains substantial improvements in performance.
Future work can focus on testing the effectiveness of this framework on regular single-source noisy label learning scenarios with complex instance-dependent noise and investigating more intrinsic patterns in crowdsourced datasets.

DOI: 10.1007/s11704-023-3578-7

The overall framework of KD-Crowd

Credit: Shao-Yuan LI, Yu-Xiang ZHENG, Ye SHI, Sheng-Jun HUANG, Songcan CHEN

Crowdsourcing efficiently delegates tasks to crowd workers for labeling, though their varying expertise can lead to errors. A key task is estimating worker expertise to infer true labels. However, the noise transition matrix-based methods for modeling worker expertise often overfit annotation noise due to oversimplification or inaccurate estimations.
To solve the problems, a research team led by Shao-Yuan LI published their new research on 12 Mar 2024 in Frontiers of Computer Science co-published by Higher Education Press and Springer Nature.
The team proposed a knowledge distillation-based framework KD-Crowd, which leverages noise-model-free learning techniques to refine crowdsourcing learning. Besides, the team also proposed one f-mutual information gain-based knowledge distillation loss to prevent the student from memorizing serious mistakes of the teacher model. Compared with the existing research results, the proposed method demonstrated both on synthetic and real-world data, attains substantial improvements in performance.
Future work can focus on testing the effectiveness of this framework on regular single-source noisy label learning scenarios with complex instance-dependent noise and investigating more intrinsic patterns in crowdsourced datasets.

DOI: 10.1007/s11704-023-3578-7



Journal

Frontiers of Computer Science

DOI

10.1007/s11704-023-3578-7

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

KD-Crowd: a knowledge distillation framework for learning from crowds

Article Publication Date

12-Mar-2024

Share26Tweet17
Previous Post

Can animals count?

Next Post

Most massive stellar black hole in our galaxy found

Related Posts

blank
Technology and Engineering

Full-Scale Pedaling Mannequin Tested in Wind Tunnel

August 31, 2025
blank
Technology and Engineering

Ensemble Algorithms Predict Neonatal Mortality in Ethiopia

August 31, 2025
blank
Technology and Engineering

Transforming Food Waste: Pseudomonas aeruginosa Bio-Emulsifiers

August 31, 2025
blank
Technology and Engineering

Impact of New Football Helmets on Heat Regulation

August 31, 2025
blank
Technology and Engineering

Deep Learning Models Combat Afaan Oromo Fake News

August 31, 2025
blank
Technology and Engineering

Agave americana Enhances Sustainable ZnO Nanoparticles for Cancer Treatment

August 31, 2025
Next Post
Artist’s impression of the system with the most massive stellar black hole in our galaxy

Most massive stellar black hole in our galaxy found

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27542 shares
    Share 11014 Tweet 6884
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    956 shares
    Share 382 Tweet 239
  • Bee body mass, pathogens and local climate influence heat tolerance

    642 shares
    Share 257 Tweet 161
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    509 shares
    Share 204 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    313 shares
    Share 125 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Evaluating Screening Tools for Neurocognitive Disorders in Trauma
  • Pediatric Oncology Access in Urmia: Survey Insights
  • Christian Nationalism: Spirituality’s Intricate Interplay Explored
  • Peer Networks Enhance Self-Regulated Learning in Biomedical Engineering

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,182 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading