Friday, August 15, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Cancer

Detective algorithm predicts best drugs for genetic disorders and cancer

August 22, 2024
in Cancer
Reading Time: 4 mins read
0
Main authors of the research
66
SHARES
598
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

A computational model built by researchers at the Institute of Research in Biomedicine (IRB Barcelona) and the Centre for Genomic Regulation (CRG) can predict which drugs will be most effective in treating diseases caused by mutations that can bring protein synthesis to a halt, resulting in unfinished proteins. 

Main authors of the research

Credit: Centre for Genomic Regulation

A computational model built by researchers at the Institute of Research in Biomedicine (IRB Barcelona) and the Centre for Genomic Regulation (CRG) can predict which drugs will be most effective in treating diseases caused by mutations that can bring protein synthesis to a halt, resulting in unfinished proteins. 

The findings, published today in Nature Genetics, mark an important step in helping personalise treatment by matching patients with specific mutations with the most promising drug candidate. The predictive model, a publicly available resource called RTDetective, can accelerate the design, development, and efficacy of clinical trials for many different types of genetic disorders and cancers.

Truncated proteins are the result of protein synthesis coming to a sudden halt. In our bodies, this is caused by the appearance of ‘nonsense mutations’ which act like a stop sign or roadblock, causing cellular machinery to suddenly hit the brakes. In many cases, these unfinished proteins stop working and cause disease.

The presence of these stop signs underlies up to one in five single-gene disorders, including some types of cystic fibrosis and Duchenne muscular dystrophy. They also often appear in tumour suppressor genes, which normally help control cell growth. Stop signs inactivate these genes and are a major cause of cancer.

Diseases emerging from truncated proteins can be targeted with nonsense suppression therapies, drugs which help cells ignore or “read through” the stop signs that appear during protein production. Cells with higher readthrough rates will make more full-length, or near full-length, proteins. 

The study demonstrates that, to date, clinical trials of nonsense suppression therapies are likely to have used ineffective patient-drug combinations. This is because the effectiveness of drugs in promoting readthrough depends not just on the nonsense mutation, but also on the genetic code immediately surrounding it.

The researchers made the discovery after studying 5,800 disease-causing premature stop signs and testing the efficacy of eight different drugs on each of them. The data is derived from patient reports submitted to freely accessible public archives like ClinVar, as well as from research projects like The Cancer Genome Atlas (TCGA), which collected and analysed genetic information from thousands of cancer and genetic disease patients, including premature stop codons.

They found that a drug that works well for one premature stop sign may not be effective for another, even within the same gene, because of the local sequence context around the premature stop sign. “Think of DNA sequence as a road, with a stop mutation appearing as a roadblock. We show that navigating through this obstacle depends heavily on the immediate surroundings. Some mutations are surrounded by well-marked detour routes while others are full of potholes or dead ends. This is what marks a drug’s ability to bypass obstacles and work effectively,” explains Ignasi Toledano, first author of the study and joint PhD student at IRB Barcelona and the Centre for Genomic Regulation.

The researchers generated a substantial amount of data by testing many different combinations of drugs on bypassing the stop signs, resulting in a total of over 140,000 individual measurements. The data was large enough to train accurate predictive models, which they used to create RTDetective.

The researchers used the algorithm to predict the effectiveness of different drugs for every one of the 32.7 million possible stop signs that can be generated in RNA transcripts in the human genome. At least one of the six drugs tested was predicted to achieve more than 1% readthrough in 87.3% of all possible stop signs, and 2% readthrough for nearly 40% of cases. 

The results are promising because higher readthrough percentages generally correlate with better therapeutic outcomes. For example, Hurler syndrome is a severe genetic disorder caused by a nonsense mutation in the IDUA gene. Previous studies have shown that, with just 0.5% readthrough, individuals can partially mitigate the severity of the disease by creating very small amounts of functional protein. RTDetective predicted that readthrough above this threshold can be achieved by at least one of the drugs.

“Imagine a patient is diagnosed with a genetic disorder. The exact mutation is identified through genetic testing and then a computer model suggests which drug is the best to use. This informed decision-making is the promise of personalised medicine we hope to unlock in the future,” explains ICREA Research Professor Ben Lehner, one of the main authors of the study and Group Leader at the Centre for Genomic Regulation in Barcelona and the Wellcome Sanger Institute in the UK.

The study also suggests how new drugs can be quickly given to the correct patients. “When a new readthrough drug is discovered, we can use this approach to rapidly build a model for it and to identify all the patients that are most likely to benefit,” adds Professor Lehner. 

The researchers next plan on confirming the functionality of proteins produced via readthrough drugs, a crucial step in validating their clinical applicability. The team also plans to explore other strategies that can be used in combination with nonsense suppression therapies to further the effectiveness of treatments, particularly in cancer. 

“Our study not only opens new avenues for treatment of heritable genetic diseases, for which readthrough agents were trialled before, but also importantly for treatment of tumours, since the majority of cancers have mutations causing premature termination of proteins,” concludes ICREA Research Professor Fran Supek at IRB Barcelona, one of the main authors of the study.



Journal

Nature Genetics

DOI

10.1038/s41588-024-01878-5

Method of Research

Data/statistical analysis

Subject of Research

People

Share26Tweet17
Previous Post

For first time, DNA tech offers both data storage and computing functions

Next Post

Self-improving AI method increases 3D-printing efficiency

Related Posts

blank
Cancer

Rewrite How lactate fuels breast cancer—and how to stop it this news headline for the science magazine post

August 15, 2025
blank
Cancer

Rewrite HKUMed identifies key protein in liver cancer resistance and develops inhibitor to enhance therapy and prevent cancer recurrence this news headline for the science magazine post

August 15, 2025
blank
Cancer

Precision Nanobody Therapy Breaks New Ground in Targeting Lung Cancer Tumors

August 15, 2025
blank
Cancer

One in Three U.S. Adults Unaware of HPV’s Link to Cancer

August 15, 2025
blank
Cancer

Rare Li-Fraumeni Syndrome Case with Dual Malignancies

August 15, 2025
blank
Cancer

BU Researchers Uncover Mutational Signatures and Tumor Dynamics in Chinese Patient Cohort

August 15, 2025
Next Post
3d printing demo kidney

Self-improving AI method increases 3D-printing efficiency

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27533 shares
    Share 11010 Tweet 6881
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    947 shares
    Share 379 Tweet 237
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    310 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Infant Mice Thrive in Microgravity: A Groundbreaking Space Research Discovery
  • Revolutionizing Medical Big Data: A Fresh Perspective on Slicing and Dictionaries
  • Rewrite How lactate fuels breast cancer—and how to stop it this news headline for the science magazine post
  • Rewrite Sweden’s most powerful laser delivers record-short light pulses this news headline for the science magazine post

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading