Friday, November 7, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Cancer

AI Enhances Adrenal Lesion Diagnosis via PET

November 7, 2025
in Cancer
Reading Time: 4 mins read
0
65
SHARES
590
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

In a groundbreaking study poised to transform oncologic imaging, researchers have harnessed the power of machine learning to distinguish between benign and malignant adrenal lesions with unprecedented precision. Utilizing 18F-FDG PET/CT scanning combined with advanced computational analytics, this pioneering work addresses one of the most challenging diagnostic dilemmas in endocrinology and oncology: accurately characterizing adrenal masses when conventional imaging yields ambiguous results.

Adrenal lesions are frequently discovered incidentally during routine imaging, especially in cancer patients. However, differentiating whether these lesions are harmless benign growths or malignant tumors harboring metastatic disease carries profound implications for patient management and prognosis. Traditional imaging modalities and clinical assessments often fall short, leading to potential overtreatment or missed diagnoses. This study confronts that issue head-on by integrating metabolic and anatomical data with sophisticated machine learning algorithms.

The research team retrospectively analyzed a robust cohort of 255 patients who underwent 18F-FDG PET/CT, extracting a suite of imaging biomarkers known to reflect tumor biology. These included adrenal maximum standardized uptake value (SUVmax), peak SUV (SUVpeak), tumor size, CT attenuation values, and the tumor-to-liver SUVmax ratio (T/L SUVmax). Clinical parameters were also considered to enrich the dataset, facilitating a comprehensive representation of lesion characteristics.

The investigators designed a two-stage classification framework: the first tasked with binary discrimination between benign and malignant adrenal lesions, and the second focusing on subclassifying malignant tumors into lung cancer metastases or lymphoma—a critical differentiation guiding therapeutic approaches. To maximize performance, seven distinct machine learning models were trained and rigorously tested through 10-fold cross-validation, ensuring robust evaluation and minimizing overfitting.

Among the algorithms, ensemble methods including Random Forest, Bagging, and XGBoost demonstrated extraordinary accuracy for the initial classification task, achieving an area under the curve (AUC) greater than 0.99. Notably, the Bagging model achieved a flawless recall of 100%, indicating perfect sensitivity in detecting malignancy without false negatives—a clinically invaluable attribute. Such performance metrics suggest these models can revolutionize early adrenal lesion characterization.

Delving deeper into feature importance, the study employed SHapley Additive exPlanations (SHAP) analysis to unravel the inner workings of the machine learning models, imparting interpretability often lacking in black-box AI systems. This technique revealed that the tumor-to-liver SUVmax ratio, adrenal SUVmax, and CT attenuation were the paramount features driving diagnostic decisions, underscoring the complementary roles of metabolic activity and tissue density measurements.

In the secondary task of discriminating malignant subtypes, an artificial neural network (ANN) emerged as the best performer, reaching an AUC of 0.887 and an F1-score of 0.851. These results illuminate the nuanced biological differences between lung cancer metastases and lymphoma within the adrenal gland, with SHAP analysis highlighting higher metabolic indices in lymphoma and elevated CT attenuation values characteristic of lung tumor metastasis.

The integration of PET-derived metabolic markers with CT structural features epitomizes a paradigm shift whereby multi-parametric imaging data, coupled with explainable AI, can yield precise, actionable insights for clinicians. This fusion fosters personalized medicine, tailoring interventions to lesion biology revealed through non-invasive imaging and computational analysis.

Beyond accuracy, the study’s emphasis on interpretability addresses growing concerns about AI transparency in healthcare. By elucidating how individual radiologic features influence model predictions, SHAP empowers practitioners to comprehend and trust machine learning outputs, facilitating their adoption in clinical workflows and enhancing patient communication.

The implications extend to oncologic staging, surgical planning, and surveillance strategies. Accurately identifying malignant lesions that require intervention versus benign nodules that warrant conservative management can reduce unnecessary surgeries, biopsies, and associated morbidity. Furthermore, reliable subtyping informs oncologists in selecting targeted therapies, particularly relevant for lymphoma and metastatic lung cancer which have divergent treatment algorithms.

Importantly, the study’s retrospective design leverages existing clinical imaging data, highlighting the feasibility of implementing these models in real-world settings without necessitating costly new protocols. This adaptability accelerates translation from research to bedside, where timely and accurate diagnosis profoundly impacts outcomes.

Looking forward, researchers anticipate integrating larger, multi-center datasets to enhance model generalizability across diverse populations and imaging platforms. Additionally, combining molecular biomarkers with imaging features could unlock even greater diagnostic granularity. As machine learning techniques evolve, their synergy with advanced imaging heralds a future where precision oncology is both data-driven and clinically interpretable.

In conclusion, this seminal work exemplifies the marriage of cutting-edge imaging technology and artificial intelligence to solve a critical diagnostic challenge in adrenal lesion evaluation. The demonstrated high accuracy and transparency of these machine learning models invite a new era of personalized, non-invasive diagnostic pathways that may soon become the standard of care in managing adrenal masses.

This research not only advances the frontiers of medical imaging but also reinforces the indispensable role of computational AI tools in modern medicine. By translating complex metabolic and anatomical data into clear, clinically meaningful classifications, machine learning fosters better decision-making, improves patient outcomes, and ultimately transforms the landscape of oncologic diagnostics.


Subject of Research: Machine learning-based classification of benign versus malignant adrenal lesions using 18F-FDG PET/CT imaging combined with clinical variables, including malignancy subtyping into lung cancer metastases and lymphoma.

Article Title: Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP interpretation study

Article References: Wang, Y., Su, Y., Li, J. et al. Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP interpretation study. BMC Cancer 25, 1726 (2025). https://doi.org/10.1186/s12885-025-15243-0

Image Credits: Scienmag.com

DOI: 10.1186/s12885-025-15243-0 (07 November 2025)

Tags: 18F-FDG PET/CT analysisadrenal lesion diagnosisadrenal mass characterizationadvanced computational analytics in healthcareAI in medical imagingdifferentiating benign and malignant tumorsimaging biomarkers in endocrinologymachine learning in oncologyPET CT imaging advancementsprecision medicine in cancer careretrospective patient cohort studytumor biology reflection through imaging
Share26Tweet16
Previous Post

Holocene Antarctic Ice-Shelf Collapse Fueled by Meltwater Feedbacks

Next Post

Metros Cut Car Use, Trams Don’t in Europe

Related Posts

blank
Cancer

Scientists Identify Hidden HPV-Linked Cell Type That May Drive Early Cervical Cancer

November 7, 2025
blank
Cancer

Colorectal Cancer Outsmarts Immunotherapy by Employing a Dual Defense Mechanism

November 7, 2025
blank
Cancer

AI-Based APL Screening Using WBC Data

November 7, 2025
blank
Cancer

Low Cancer Screening Participation in India Revealed

November 7, 2025
blank
Cancer

City of Hope Names Renowned Lung Cancer Specialist Dr. Christine M. Lovly as Director of National Thoracic Oncology Program

November 7, 2025
blank
Cancer

Supervised Exercise Enhances Strength and Physical Performance in Advanced Breast Cancer Patients

November 7, 2025
Next Post
blank

Metros Cut Car Use, Trams Don’t in Europe

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27577 shares
    Share 11028 Tweet 6892
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    985 shares
    Share 394 Tweet 246
  • Bee body mass, pathogens and local climate influence heat tolerance

    651 shares
    Share 260 Tweet 163
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    519 shares
    Share 208 Tweet 130
  • Groundbreaking Clinical Trial Reveals Lubiprostone Enhances Kidney Function

    487 shares
    Share 195 Tweet 122
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Hydrogen Sulfide Accelerates Plasmid Antibiotic Resistance Transfer
  • Nuclear Double Parton Insights Revealed
  • CDCA7 Alleles Influence CG Methylation in Arabidopsis
  • Deforestation Alters Climate Stability in African Mountains

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 5,189 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading