Friday, August 22, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Technology and Engineering

Mobile app predicts future depression in pregnant people

June 3, 2024
in Technology and Engineering
Reading Time: 4 mins read
0
Tamar Krishnamurti, Ph.D.
65
SHARES
591
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

A simple survey delivered during the first trimester through digital pregnancy support app MyHealthyPregnancy predicted which mothers went on to develop moderate to severe depression with a high level of accuracy, according to a new Archives of Women’s Mental Health study led by University of Pittsburgh and UPMC researchers.

Tamar Krishnamurti, Ph.D.

Credit: UPMC

A simple survey delivered during the first trimester through digital pregnancy support app MyHealthyPregnancy predicted which mothers went on to develop moderate to severe depression with a high level of accuracy, according to a new Archives of Women’s Mental Health study led by University of Pittsburgh and UPMC researchers.

“Depression is a leading complication during pregnancy with about 15% of patients reporting symptoms at some point in their pregnancy journey,” said lead author Tamar Krishnamurti, Ph.D., associate professor of general internal medicine at Pitt and investigator at Magee-Womens Research Institute. “We already have great screening tools for active depression, but our approach is unique because it predicts who is likely to develop depression in the future. If we can identify people early on, before symptoms emerge, we might be able to tailor preventive care and offer tools and support to address underlying triggers of depression.”

Krishnamurti and her team, who previously developed MyHealthyPregnancy, analyzed data from 944 patients who used the app as part of a larger study and did not have a history of depression. During the first trimester, participants completed a survey that included questions about demographics, medical history, psychosocial factors, such as stress and feelings of sadness, and pregnancy-specific stressors, such as concerns about labor and delivery. A subset of patients also completed optional questions about health-related social factors, such as food insecurity. All participants completed verified depression screenings once per trimester.

After using 80% of the data to train six different machine-learning models, the researchers used the remaining 20% to test how well they were able to predict depression onset later in pregnancy. The best model was 89% accurate in predicting future depression and used only 14 of 55 possible variables, including anxiety history, partnered status, psychosocial factors and pregnancy-specific stressors.

As part of the research, the team worked with providers and perinatal individuals to review and refine the model so that it reflected their professional and lived experiences.

When the researchers included health-related social factors from the subset of participants who completed these questions, food insecurity emerged as an important risk factor for depression. When this variable was included in the model, race and income dropped out as important, and the model’s accuracy increased to 93% with a total of just nine variables.

“We can ask people a small set of questions and get a good sense of whether they’ll become depressed,” said Krishnamurti. “Strikingly, a lot of risk factors for future depression are things that are modifiable — such as sleep quality, concerns about labor and delivery and, importantly, access to food — meaning that we can and should do something about them.”

Perinatal depression is linked with poor outcomes for mom and baby, including higher rates of preterm delivery, delayed infant development and problems with mother-child bonding. While history of depression is a strong predictor of perinatal depression, this tool could help identify others who become depressed for the first time during pregnancy.

Now, Krishnamurti and her team are developing approaches to integrate these screening questions into clinical workflows and identifying the best ways for clinicians to have conversations with patients about depression risk.

“We want to think carefully about how to talk with patients about depression risk as opposed to the active experience of depression,” she explained. “For this information to be empowering and not anxiety-inducing, it’s important that it’s easy to understand and actionable. Our focus now is not just on refining our ability to predict depression, but also on improving and personalizing interventions so that they are most effective for any given individual.”

Such interventions could include connecting people with resources in their area, recommending in-person maternal support groups that address pregnancy-related stressors or offering virtual, app-based therapy options.

Other authors on the study were Samantha Rodriguez, M.S., Priya Gopalan, M.D., and Hyagriv Simhan, M.D., M.S., all of Pitt or UPMC; and Bryan Wilder, Ph.D., of Carnegie Mellon University.

This research was funded by the National Institute of Mental Health (5R34 MH130950).

##



Journal

Archives of Women s Mental Health

DOI

10.1007/s00737-024-01474-w

Method of Research

Survey

Subject of Research

People

Article Title

Predicting first time depression onset in pregnancy: applying machine learning methods to patient-reported data

Article Publication Date

22-May-2024

COI Statement

Authors TK and HS hold equity ownership in Naima Health LLC. The remaining authors have no relevant financial or non-financial interests to disclose.

Share26Tweet16
Previous Post

ACP recommends AI tech should augment physician decision-making, not replace it

Next Post

Researchers: Excluding partisanship questions from public health surveys ‘limits our capacity for advancing population health and health equity’

Related Posts

blank
Technology and Engineering

Revolutionary AI Model Promises Longer Lifespan and Enhanced Safety for Electric Vehicle Batteries

August 22, 2025
blank
Technology and Engineering

Federated Learning Enhances Data Privacy in Battery SOH Prediction

August 22, 2025
blank
Technology and Engineering

Stretchable Displays Achieve Enhanced Density with Overlapped Pixels

August 22, 2025
blank
Technology and Engineering

Revolutionizing Prosthetic Legs: Innovations Through Data-Driven Design

August 22, 2025
blank
Technology and Engineering

Natural Disinfectants: Their Role in Prosthodontics and Oral Implantology

August 21, 2025
blank
Technology and Engineering

Enhancing Disaster Response Strategies Through the EBD Dataset

August 21, 2025
Next Post

Researchers: Excluding partisanship questions from public health surveys ‘limits our capacity for advancing population health and health equity’

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27536 shares
    Share 11011 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    951 shares
    Share 380 Tweet 238
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    508 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Perilla frutescens acuta Stops Allergy by Blocking Key Pathways
  • Link Between Halquinol and Antibiotic Resistance Explored
  • Vaginal Estrogen Tablets Show Safety Potential for Postmenopausal Stroke Survivors
  • Decoding Female Addiction: Decision Biases Unveiled

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading