Thursday, August 21, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Mathematics

Cleveland Clinic and IBM researchers apply quantum computing methods to protein structure prediction

May 29, 2024
in Mathematics
Reading Time: 4 mins read
0
66
SHARES
602
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

CLEVELAND – Researchers from Cleveland Clinic and IBM recently published findings in the Journal of Chemical Theory and Computation that could lay the groundwork for applying quantum computing methods to protein structure prediction. This publication is the first peer-reviewed quantum computing paper from the Cleveland Clinic-IBM  Discovery Accelerator partnership. 

CLEVELAND – Researchers from Cleveland Clinic and IBM recently published findings in the Journal of Chemical Theory and Computation that could lay the groundwork for applying quantum computing methods to protein structure prediction. This publication is the first peer-reviewed quantum computing paper from the Cleveland Clinic-IBM  Discovery Accelerator partnership. 

For decades, researchers have leveraged computational approaches to predict protein structures. A protein folds itself into a structure that determines how it functions and binds to other molecules in the body. These structures determine many aspects of human health and disease. 

By accurately predicting the structure of a protein, researchers can better understand how diseases spread and thus how to develop effective therapies. Cleveland Clinic postdoctoral fellow Bryan Raubenolt, Ph.D., and IBM researcher Hakan Doga, Ph.D., spearheaded a team to discover how quantum computing can improve current methods.   

In recent years, machine learning techniques have made significant progress in protein structure prediction. These methods are reliant on training data (a database of experimentally determined protein structures) to make predictions. This means that they are constrained by how many proteins they have been taught to recognize. This can lead to lower levels of accuracy when the programs/algorithms encounter a protein that is mutated or very different from those on which they were trained, which is common with genetic disorders. 

The alternative method is to simulate the physics of protein folding. Simulations allow researchers to look at a given protein’s various possible shapes and find the most stable one. The most stable shape is critical for drug design.  

The challenge is that these simulations are nearly impossible on a classical computer, beyond a certain protein size. In a way, increasing the size of the target protein is comparable to increasing the dimensions of a Rubik’s cube. For a small protein with 100 amino acids, a classical computer would need the time equal to the age of the universe to exhaustively search all the possible outcomes, says Dr. Raubenolt. 

To help overcome these limitations, the research team applied a mix of quantum and classical computing methods. This framework could allow quantum algorithms to address the areas that are challenging for state-of-the-art classical computing, including protein size, intrinsic disorder, mutations and the physics involved in proteins folding. The framework was validated by accurately predicting the folding of a small fragment of a Zika virus protein on a quantum computer, compared to state-of-the-art classical methods.  

The quantum-classical hybrid framework’s initial results outperformed both a classical physics-based method and AlphaFold2. Although the latter is designed to work best with larger proteins, it nonetheless demonstrates this framework’s ability to create accurate models without directly relying on substantial training data. 

The researchers used a quantum algorithm to first model the lowest energy conformation for the fragment’s backbone, which is typically the most computationally demanding step of the calculation. Classical approaches were then used to convert the results obtained from the quantum computer, reconstruct the protein with its sidechains, and perform final refinement of the structure with classical molecular mechanics force fields. The project shows one of the ways that problems can be deconstructed into parts, with quantum computing methods addressing some parts and classical computing others, for increased accuracy.  

“One of the most unique things about this project is the number of disciplines involved,” says Dr. Raubenolt. “Our team’s expertise ranges from computational biology and chemistry, structural biology, software and automation engineering, to experimental atomic and nuclear physics, mathematics, and of course quantum computing and algorithm design. It took the knowledge from each of these areas to create a computational framework that can mimic one of the most important processes for human life.”   

The team’s combination of classical and quantum computing methods is an essential step for advancing our understanding of protein structures, and how they impact our ability to treat and prevent disease. The team plans to continue developing and optimizing quantum algorithms that can predict the structure of larger and more sophisticated proteins. 

“This work is an important step forward in exploring where quantum computing capabilities could show strengths in protein structure prediction,” says Dr. Doga. “Our goal is to design quantum algorithms that can find how to predict protein structures as realistically as possible.” 



Journal

Journal of Chemical Theory and Computation

DOI

10.1021/acs.jctc.4c00067

Article Title

A Perspective on Protein Structure Prediction Using Quantum Computers

Article Publication Date

4-May-2024

Share26Tweet17
Previous Post

Blood flow makes waves across the surface of the mouse brain

Next Post

Inconsistent gaps by race and ethnicity exist in quality of health care under traditional Medicare and Medicare Advantage plans

Related Posts

Mathematics

Innovative Statistical Tool Uncovers Hidden Genetic Pathways in Complex Diseases, Advancing Personalized Genetic Medicine

August 20, 2025
blank
Mathematics

How Family Socioeconomic Status Influences Eating Disorder Symptoms During Adolescence

August 20, 2025
blank
Mathematics

AI Harnesses Biological Variability to Create Advanced Serum-Free Culture Medium

August 20, 2025
blank
Mathematics

Quantum and AI Unite: Machine Learning Breakthroughs Enhance Estimation and Control of Quantum Systems

August 19, 2025
blank
Mathematics

Cutting-Edge Accelerator Boosts Qubit Performance

August 18, 2025
blank
Mathematics

When AI Support Fails: Risks in Safety-Critical Environments

August 18, 2025
Next Post

Inconsistent gaps by race and ethnicity exist in quality of health care under traditional Medicare and Medicare Advantage plans

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27536 shares
    Share 11011 Tweet 6882
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    951 shares
    Share 380 Tweet 238
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    508 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    311 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • New Study Uncovers Key Genes That Suppress Blood Cancer Progression
  • Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals
  • Heat-Stressed Australian Forests Rapidly Thin, Releasing Significant Carbon Emissions
  • Electron Flow Matching Advances Reaction Mechanism Prediction

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading