Saturday, August 9, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Technology and Engineering

Researchers wrestle with accuracy of AI technology used to create new drug candidates

May 16, 2024
in Technology and Engineering
Reading Time: 3 mins read
0
Bryan Roth, MD, PhD
66
SHARES
602
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

CHAPEL HILL, N.C. – Artificial intelligence (AI) has numerous applications in healthcare, from analyzing medical imaging to optimizing the execution of clinical trials, and even facilitating drug discovery.

Bryan Roth, MD, PhD

Credit: UNC Department of Pharmacology

CHAPEL HILL, N.C. – Artificial intelligence (AI) has numerous applications in healthcare, from analyzing medical imaging to optimizing the execution of clinical trials, and even facilitating drug discovery.

AlphaFold2, an artificial intelligence system that predicts protein structures, has made it possible for scientists to identify and conjure an almost infinite number of drug candidates for the treatment of neuropsychiatric disorders. However recent studies have sown doubt about the accuracy of AlphaFold2 in modeling ligand binding sites, the areas on proteins where drugs attach and begin signaling inside cells to cause a therapeutic effect, as well as possible side effects.

In a new paper, Bryan Roth, MD, PhD, the Michael Hooker Distinguished Professor of Pharmacology and director of the NIMH Psychoactive Drug Screening Program at the University of North Carolina School of Medicine, and colleagues at UCSF, Stanford and Harvard determined that AlphaFold2 can yield accurate results for ligand binding structures, even when the technology has nothing to go off of. Their results were published in Science.

“Our results suggest that AF2 structures can be useful for drug discovery,” said Roth, senior author who holds a joint appointment at the UNC Eshelman School of Pharmacy. “With a nearly infinite number of possibilities to create drugs that hit their intended target to treat a disease, this sort of AI tool can be invaluable.”

AlphaFold2 and Prospective Modeling

Much like weather forecasting or stock market prediction, AlphaFold2 works by pulling from a massive database of known proteins to create models of protein structures. Then, it can simulate how different molecular compounds (like drug candidates) fit into the protein’s binding sites and produce wanted effects. Researchers can use the resulting combinations to better understand protein interactions and create new drug candidates.

To determine the accuracy of AlphaFold2, researchers had to compare the results of a retrospective study against that of a prospective study. A retrospective study involves researchers feeding the prediction software compounds they already know bind to the receptor. Whereas, a prospective study requires researchers to use the technology as a fresh slate, and then feed the AI platform information about compounds that may or may not interact with the receptor.

Researchers used two proteins, sigma-2 and 5-HT2A, for the study. These proteins, which belong to two different protein families, are important in cell communication and have been implicated in neuropsychiatric conditions such as Alzheimer’s disease and schizophrenia. The 5-HT2A serotonin receptor is also the main target for psychedelic drugs which show promise for treating a large number of neuropsychiatric disorders.

Roth and colleagues selected these proteins because AlphaFold2 had no prior information about sigma-2 and 5-HT2A or the compounds that might bind to them. Essentially, the technology was given two proteins for which it wasn’t trained on — essentially giving the researchers a “blank slate.”

First, researchers fed the AlphaFold system the protein structures for sigma-2 and 5-HT2A, creating a prediction model. Researchers then accessed physical models of the two proteins that were produced using complex microscopy and x-ray crystallography techniques. With a press of a button, as many as 1.6 billion potential drugs were targeted to the experimental models and AlphaFold2 models. Interestingly, every model had a different drug candidate outcome.

Successful Hit Rates

Despite the models having differing results, they show great promise for drug discovery. Researchers determined that the proportion of compounds that actually altered protein activity for each of the models were around 50% and 20% for the sigma-2 receptor and 5-HT2A receptors, respectively. A result greater than 5% is exceptional.

Out of the hundreds of millions of potential combinations, 54% of the drug-protein interactions using the sigma-2 AlphaFold2 protein models were successfully activated through a bound drug candidate. The experimental model for sigma-2 produced similar results with a success rate of 51%.

“This work would be impossible without collaborations among several leading experts at UCSF, Stanford, Harvard, and UNC-Chapel Hill,” Roth said. “Going forward we will test whether these results might be applicable to other therapeutic targets and target classes.”



Journal

Science

DOI

10.1101/2023.12.20.572662

Share26Tweet17
Previous Post

Ground-breaking accelerated discovery research unveils 21 novel materials for advanced organic solid-state laser technology: a global collaboration success story

Next Post

Aston University researcher receives £1 million grant to revolutionize miniature optical devices

Related Posts

blank
Technology and Engineering

UCLA Research Uncovers Intricate Mechanisms Governing Blinking and Eyelid Function

August 8, 2025
blank
Technology and Engineering

Boosting Magnesium Ion Conductivity in PVA Capacitors

August 8, 2025
blank
Technology and Engineering

A Breakthrough Solution for Heart Health

August 8, 2025
blank
Technology and Engineering

Enhancing MOFs with Lithium Salts for Superior Batteries

August 8, 2025
blank
Technology and Engineering

Exploring the Connection: How Wildfire Smoke Intensifies Ozone Pollution

August 8, 2025
blank
Technology and Engineering

SFU’s Indoor Berry Research Expands and Diversifies Thanks to Homegrown Innovation Challenge Support

August 8, 2025
Next Post
Professor Misha Sumetsky

Aston University researcher receives £1 million grant to revolutionize miniature optical devices

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27531 shares
    Share 11009 Tweet 6881
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    943 shares
    Share 377 Tweet 236
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    310 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Revolutionizing Fetal Congenital Heart Disease: MRI’s Impact
  • Distinct Coral Reef Regions Identified in Red Sea
  • Scientists Discover Novel Mechanism Behind Cellular Tolerance to Anticancer Drugs
  • Enhancing Pediatric Abdominal MRI Quality with Deep Learning

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,860 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading