Thursday, August 28, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Cancer

Artificial intelligence algorithms and optical imaging technology: A promising approach to intraoperative cancer diagnosis

May 15, 2024
in Cancer
Reading Time: 3 mins read
0
D-FFOCT images, Score-CAM heatmaps, overlay images and corresponding H&E images.
66
SHARES
603
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Rapid and accurate intraoperative diagnosis is critical for tumor surgery and can provide precise guidance for surgical decisions. However, traditional intraoperative assessments based on H&E histology, such as frozen sections, are time-, resource-, and labor-intensive, and involve specimen-consuming concerns. D-FFOCT is a high-resolution optical imaging technology capable of rapidly generating virtual histology. In a recent study published in Science Bulletin, led by Professor Shu Wang (Breast Center, Peking University People’s Hospital), researchers introduced an intraoperative diagnostic workflow. This approach employed deep learning algorithms to classify tumors based on D-FFOCT images, enabling rapid and accurate automated diagnosis.

D-FFOCT images, Score-CAM heatmaps, overlay images and corresponding H&E images.

Credit: ©Science China Press

Rapid and accurate intraoperative diagnosis is critical for tumor surgery and can provide precise guidance for surgical decisions. However, traditional intraoperative assessments based on H&E histology, such as frozen sections, are time-, resource-, and labor-intensive, and involve specimen-consuming concerns. D-FFOCT is a high-resolution optical imaging technology capable of rapidly generating virtual histology. In a recent study published in Science Bulletin, led by Professor Shu Wang (Breast Center, Peking University People’s Hospital), researchers introduced an intraoperative diagnostic workflow. This approach employed deep learning algorithms to classify tumors based on D-FFOCT images, enabling rapid and accurate automated diagnosis.

In a prospective cohort, a total of 224 breast samples were included in their study and imaged using D-FFOCT. The acquisition of the D-FFOCT images was non-destructive and did not require any tissue preparation or staining procedures. The D-FFOCT slides were cropped into patches. All slides were divided into training set (slides: n=182; patches: n=10,357) and external testing set (slides: n=42; patches: n=3140) according to the collection time order. Five-fold cross-validation method was used to train and fine-tune the model. A machine learning model, employed after feature extraction of patch prediction results, was utilized to aggregate the patch-level results to the slide level.

In the testing set, the diagnostic performance of their model at the patch level was relatively good for determining the nature of breast tissue, with an AUC of 0.926 (95% CI: 0.907–0.943). At the slide level, the overall diagnostic accuracy in the testing set was 97.62%, with a sensitivity of 96.88%, specificity of 100%. No statistically significant differences in accuracy were observed for different molecular subtypes and histologic tumor types of breast cancer. Visualization heatmaps indicated that deep learning models learned relevant features of metabolically active cell clusters in D-FFOCT images, which was consistent with expert experience. This deep-learning-based image analysis could potentially transfer to various other tumor types, as the features detected in the model appeared to be conserved characteristics in oncology diagnosis. In the margin simulation experiment, the diagnostic process takes approximately 3 min, with the deep learning model achieving a high accuracy of 95.24%.

Based on the above results, this study proposed an intraoperative cancer diagnosis workflow that integrates D-FFOCT with the deep learning model. In simulated intraoperative margin diagnosis, this workflow achieved a total processing time of approximately 3 min, decreasing the time to diagnosis by a factor of 10 compared to conventional intraoperative histology. Additionally, it proved to be remarkably labor-cost-effective. No tissue destruction occurred during optical imaging and analysis. In summary, this workflow provides a transparent means for delivering a rapid and accurate intraoperative diagnosis and, potentially serving as a potential tool for guiding intraoperative decisions.

###

See the article:

Potential rapid intraoperative cancer diagnosis using dynamic full-field optical coherence tomography and deep learning: A prospective cohort study in breast cancer patients



Journal

Science Bulletin

DOI

10.1016/j.scib.2024.03.061

Share26Tweet17
Previous Post

6-month-old infants who struggle to understand and predict sequences are more likely to have social communication difficulties aged 2-3, highlighting visual statistical learning as a potential predictor of autistic-related traits

Next Post

The crystallization of memory: Study reveals how practice forms new memory pathways in the brain

Related Posts

blank
Cancer

New CEA-Based Surveillance Boosts Gastric Cancer

August 28, 2025
blank
Cancer

MERIT Grant Secured to Advance HIV Cure Research

August 28, 2025
blank
Cancer

New Study Reveals Key Mechanisms Behind Cancer Cell Response and Resistance to Treatment

August 28, 2025
blank
Cancer

Immune Cell Therapy Shows Promise in Stabilizing Advanced Head and Neck Cancer

August 28, 2025
blank
Cancer

Decoding KRAS: Breakthrough Advances Offer New Hope for Pancreatic Cancer Patients

August 28, 2025
blank
Cancer

New Molecular Test Enables Personalized Treatment for Prostate Cancer

August 28, 2025
Next Post
The crystallization of memory: Study reveals how practice forms new memory pathways in the brain

The crystallization of memory: Study reveals how practice forms new memory pathways in the brain

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27540 shares
    Share 11013 Tweet 6883
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    953 shares
    Share 381 Tweet 238
  • Bee body mass, pathogens and local climate influence heat tolerance

    642 shares
    Share 257 Tweet 161
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    509 shares
    Share 204 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    312 shares
    Share 125 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Unequal Human Exposure to Future Climate Extremes
  • Free-Roaming Bison in Yellowstone Boost Grassland Resilience
  • Uncovered: Genetic Changes That Transformed Wild Horses into Rideable Companions
  • Maximizing Liver Graft Use from Circulatory Death Donors

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Blog
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading