Friday, August 15, 2025
Science
No Result
View All Result
  • Login
  • HOME
  • SCIENCE NEWS
  • CONTACT US
  • HOME
  • SCIENCE NEWS
  • CONTACT US
No Result
View All Result
Scienmag
No Result
View All Result
Home Science News Chemistry

Porous-DeepONet: A deep learning framework for efficiently solving reaction-transport equations in porous media

August 20, 2024
in Chemistry
Reading Time: 4 mins read
0
By Extending the domain geometries of a DeepONet from a simple bulk phase to a complex porous structure,the Porous-DeepONet architecture is constructed.
66
SHARES
599
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT

Porous media play a critical role in various industrial fields due to their complex pore networks and considerable specific surface areas. The transport and reaction phenomena within porous media are key factors influencing fundamental parameters such as energy storage efficiency, catalytic performance, and adsorption rates. To accurately describe these complex transport and reaction processes, solving parameterized partial differential equations (PDEs) is necessary. However, due to the complex structure of porous media, traditional methods, such as the finite element method (FEM), require substantial computational resources. There is an urgent need for innovative methods to accelerate the solution of parameterized PDEs in porous media. Researchers have developed a novel deep operator network, Porous-DeepONet, which can efficiently capture the complex features of porous media and thereby more precisely and effectively learn the solution operators, providing a robust alternative for solving parameterized reaction-transport equations in porous media and paving the way for exploring complex phenomena within them.

By Extending the domain geometries of a DeepONet from a simple bulk phase to a complex porous structure,the Porous-DeepONet architecture is constructed.

Credit: Pan Huang

ADVERTISEMENT

Porous media play a critical role in various industrial fields due to their complex pore networks and considerable specific surface areas. The transport and reaction phenomena within porous media are key factors influencing fundamental parameters such as energy storage efficiency, catalytic performance, and adsorption rates. To accurately describe these complex transport and reaction processes, solving parameterized partial differential equations (PDEs) is necessary. However, due to the complex structure of porous media, traditional methods, such as the finite element method (FEM), require substantial computational resources. There is an urgent need for innovative methods to accelerate the solution of parameterized PDEs in porous media. Researchers have developed a novel deep operator network, Porous-DeepONet, which can efficiently capture the complex features of porous media and thereby more precisely and effectively learn the solution operators, providing a robust alternative for solving parameterized reaction-transport equations in porous media and paving the way for exploring complex phenomena within them.

Deep operator networks (DeepONet) are a popular deep learning framework often used to solve parameterized PDEs. However, applying DeepONet to porous media presents significant challenges due to its limited ability to extract representative features from complex structures. To address this issue, researchers proposed Porous-DeepONet, a simple yet efficient extension of the DeepONet framework that utilizes convolutional neural networks (CNNs) to learn the solution operators of parameterized reaction-transport equations in porous media. By incorporating CNNs, Porous-DeepONet can effectively capture the complex features of porous media, achieving accurate and efficient learning of the solution operators. Additionally, researchers have coupled Porous-DeepONet with other DeepONet frameworks to extend its applicability to solving multiphysics coupled equations in porous media, resulting in Porous-DeepM&Mnet and Porous-PI-DeepONet, which are based on physical information.

To validate the effectiveness of Porous-DeepONet in accurately and rapidly learning the solution operators of parameterized reaction-transport equations under various boundary conditions, multiphase, and multiphysics fields, researchers conducted a series of comprehensive numerical simulations. The results demonstrate that Porous-DeepONet has the capability to accurately capture system behavior under various challenging conditions, showcasing its practical application potential for simulating complex porous media with different reaction parameters and boundary conditions. Compared to traditional FEM methods, Porous-DeepONet is three orders of magnitude faster in solving the same problems. Furthermore, when Porous-DeepM&Mnet is used to solve the Poisson–Nernst–Planck (PNP) equations, the solution speed is improved by approximately 50 times. Porous-DeepONet has thus become a powerful tool for addressing the solution of parameterized PDEs in porous media, especially excelling in handling complex domain geometries and multiphysics coupled equations. This research provides strong support for further exploration and application in related fields.

In summary, this work introduces Porous-DeepONet, a deep learning framework designed to learn solution operators for parameterized PDEs in porous media, with a focus on reaction-transport equations. Compared to traditional FEM, this extension can significantly improve solving efficiency. To assess the accuracy and applicability of Porous-DeepONet, researchers solved various reaction-transport equations, including the Fick diffusion equation, Fick diffusion and surface reaction equations, advection equations, and heat conduction equations. The results indicate that Porous-DeepONet efficiently solves single-phase and multiphase parameterized PDEs with complex boundary conditions, with computation times three orders of magnitude faster than traditional FEMs. Additionally, by combining Porous-DeepONet with DeepM&Mnet to address the challenge of solving multiphysics coupled PNP equations, computation times were dramatically reduced by a factor of 50. With improvements and optimizations, Porous-DeepONet has become a powerful tool for solving parameterized PDEs in porous media, particularly excelling in handling complex domain geometries and multiphysics coupled equations. This research provides strong support for further exploration and application in related fields.

The paper “Porous-DeepONet: Learning the Solution Operators of Parametric Reactive Transport Equations in Porous Media,” authored by Pan Huang, Yifei Leng, Cheng Lian, Honglai Liu. Full text of the open access paper: https://doi.org/10.1016/j.eng.2024.07.002. For more information about the Engineering, follow us on X (https://twitter.com/EngineeringJrnl) & like us on Facebook (https://www.facebook.com/EngineeringJrnl).



Journal

Engineering

DOI

10.1016/j.eng.2024.07.002

Article Title

Porous-DeepONet: Learning the Solution Operators of Parametric Reactive Transport Equations in Porous Media

Article Publication Date

19-Jul-2024

Share26Tweet17
Previous Post

Association for Molecular Pathology files lawsuit against FDA to challenge final rule on regulation for laboratory developed testing procedures

Next Post

Novel ratchet with geometrically symmetric gear driven by asymmetric surface wettability

Related Posts

blank
Chemistry

Quantum Gas Defies Warming: A Cool Breakthrough in Physics

August 15, 2025
blank
Chemistry

FSU Chemists Pioneer Advanced X-Ray Material, Revolutionizing Thin Film Imaging

August 14, 2025
blank
Chemistry

Deep Learning Model Accurately Predicts Ignition in Inertial Confinement Fusion Experiments

August 14, 2025
blank
Chemistry

Lithium Growth Controlled by Substrate and Electrolyte Interfaces

August 14, 2025
blank
Chemistry

Scientists Create Novel Carbon Allotrope in Groundbreaking Study

August 14, 2025
blank
Chemistry

Scientists Redesign Enzyme to Decode Disease Through Cellular Sugar Patterns

August 14, 2025
Next Post
Surface-energy ratchet mechanism

Novel ratchet with geometrically symmetric gear driven by asymmetric surface wettability

  • Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    Mothers who receive childcare support from maternal grandparents show more parental warmth, finds NTU Singapore study

    27533 shares
    Share 11010 Tweet 6881
  • University of Seville Breaks 120-Year-Old Mystery, Revises a Key Einstein Concept

    947 shares
    Share 379 Tweet 237
  • Bee body mass, pathogens and local climate influence heat tolerance

    641 shares
    Share 256 Tweet 160
  • Researchers record first-ever images and data of a shark experiencing a boat strike

    507 shares
    Share 203 Tweet 127
  • Warm seawater speeding up melting of ‘Doomsday Glacier,’ scientists warn

    310 shares
    Share 124 Tweet 78
Science

Embark on a thrilling journey of discovery with Scienmag.com—your ultimate source for cutting-edge breakthroughs. Immerse yourself in a world where curiosity knows no limits and tomorrow’s possibilities become today’s reality!

RECENT NEWS

  • Empowering Communities: The Benefits of Solar Sharing Among Neighbors
  • Scientists Identify Dementia-Like Behavior in Pre-Cancerous Cells
  • Quantum Gas Defies Warming: A Cool Breakthrough in Physics
  • University of Oklahoma’s Smoking Cessation App Shows Strong Results in Clinical Trial

Categories

  • Agriculture
  • Anthropology
  • Archaeology
  • Athmospheric
  • Biology
  • Bussines
  • Cancer
  • Chemistry
  • Climate
  • Earth Science
  • Marine
  • Mathematics
  • Medicine
  • Pediatry
  • Policy
  • Psychology & Psychiatry
  • Science Education
  • Social Science
  • Space
  • Technology and Engineering

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 4,859 other subscribers

© 2025 Scienmag - Science Magazine

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • HOME
  • SCIENCE NEWS
  • CONTACT US

© 2025 Scienmag - Science Magazine

Discover more from Science

Subscribe now to keep reading and get access to the full archive.

Continue reading