Wednesday, July 6, 2022
SCIENMAG: Latest Science and Health News
No Result
View All Result
  • Login
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
No Result
View All Result
Scienmag - Latest science news from science magazine
No Result
View All Result
Home SCIENCE NEWS Biology

Using Artificial Intelligence to Predict Life-Threatening Bacterial Disease in Dogs

May 23, 2022
in Biology
0
Share on FacebookShare on Twitter

Leptospirosis, a disease that dogs can get from drinking water contaminated with Leptospira bacteria, can cause kidney failure, liver disease and severe bleeding into the lungs. Early detection of the disease is crucial and may mean the difference between life and death.

Dog Dialysis

Credit: UC Veterinary Medical Center – San Diego

Leptospirosis, a disease that dogs can get from drinking water contaminated with Leptospira bacteria, can cause kidney failure, liver disease and severe bleeding into the lungs. Early detection of the disease is crucial and may mean the difference between life and death.

Veterinarians and researchers at the University of California, Davis, School of Veterinary Medicine have discovered a technique to predict leptospirosis in dogs through the use of artificial intelligence. After many months of testing various models, the team has developed one that outperformed traditional testing methods and provided accurate early detection of the disease. The groundbreaking discovery was published in Journal of Veterinary Diagnostic Investigation.

“Traditional testing for Leptospira lacks sensitivity early in the disease process,” said lead author Krystle Reagan, a board-certified internal medicine specialist and assistant professor focusing on infectious diseases. “Detection also can take more than two weeks because of the need to demonstrate a rise in the level of antibodies in a blood sample. Our AI model eliminates those two roadblocks to a swift and accurate diagnosis.”

The research involved historical data of patients at the UC Davis Veterinary Medical Teaching Hospital that had been tested for leptospirosis. Routinely collected blood work from these 413 dogs was used to train an AI prediction model. Over the next year, the hospital treated an additional 53 dogs with suspected leptospirosis. The model correctly identified all nine dogs that were positive for leptospirosis (100% sensitivity). The model also correctly identified approximately 90% of the 44 dogs that were ultimately leptospirosis negative.

The goal for the model is for it to become an online resource for veterinarians to enter patient data and receive a timely prediction.

“AI-based, clinical decision making is going to be the future for many aspects of veterinary medicine,” said School of Veterinary Medicine Dean Mark Stetter. “I am thrilled to see UC Davis veterinarians and scientists leading that charge. We are committed to putting resources behind AI ventures and look forward to partnering with researchers, philanthropists, and industry to advance this science.”  

Detection model may help people

Leptospirosis is a life-threatening zoonotic disease, meaning it can transfer from animals to humans. As the disease is also difficult to diagnose in people, Reagan hopes the technology behind this groundbreaking detection model has translational ability into human medicine.

“My hope is this technology will be able to recognize cases of leptospirosis in near real time, giving clinicians and owners important information about the disease process and prognosis,” said Reagan. “As we move forward, we hope to apply AI methods to improve our ability to quickly diagnose other types of infections.”

Reagan is a founding member of the school’s Artificial Intelligence in Veterinary Medicine Interest Group comprising veterinarians promoting the use of AI in the profession. This research was done in collaboration with members of UC Davis’ Center for Data Science and Artificial Intelligence Research, led by professor of mathematics Thomas Strohmer. He and his students were involved in the algorithm building. The center strives to bring together world-renowned experts from many fields of study with top data science and AI researchers to advance data science foundations, methods, and applications.

Reagan’s group is actively pursuing AI for prediction of outcome for other types of infections, including a prediction model for antimicrobial resistant infections, which is a growing problem in veterinary and human medicine. Previously, the group developed an AI algorithm to predict Addison’s disease with an accuracy rate greater than 99%.

Other authors include Shaofeng Deng, Junda Sheng, Jamie Sebastian, Zhe Wang, Sara N. Huebner, Louise A. Wenke, Sarah R. Michalak and Jane E. Sykes. Funding support comes from the National Science Foundation.



Journal

Journal of Veterinary Diagnostic Investigation

DOI

10.1177/10406387221096781

Method of Research

Computational simulation/modeling

Subject of Research

Animals

Article Title

Use of machine-learning algorithms to aid in the early detection of leptospirosis in dogs

Article Publication Date

21-May-2022

COI Statement

The authors declared no potential conflicts of interests with respect to the research, authorship, and/or publication of this article.

Tags: ArtificialbacterialDiseasedogsIntelligencelifethreateningpredict
Share26Tweet16Share4ShareSendShare
  • PAN protein domain

    Scientists discover cancer trigger that could spur targeted drug therapies

    72 shares
    Share 29 Tweet 18
  • Small NIH study reveals how immune response triggered by COVID-19 may damage the brain

    71 shares
    Share 28 Tweet 18
  • Researchers uncover life’s power generators in the Earth’s oldest groundwaters

    67 shares
    Share 27 Tweet 17
  • COVID-19 fattens up our body’s cells to fuel its viral takeover

    99 shares
    Share 40 Tweet 25
  • Why it is so hard for humans to have a baby?

    65 shares
    Share 26 Tweet 16
  • Natural gas is key to WVU engineer’s vision for clean hydrogen energy

    65 shares
    Share 26 Tweet 16
ADVERTISEMENT

About us

We bring you the latest science news from best research centers and universities around the world. Check our website.

Latest NEWS

COVID-19 fattens up our body’s cells to fuel its viral takeover

nTIDE May 2022 COVID Update: Uncertainty about inflation tempers good news for people with disabilities

The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 190 other subscribers

© 2022 Scienmag- Science Magazine: Latest Science News.

No Result
View All Result
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US

© 2022 Scienmag- Science Magazine: Latest Science News.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....