Saturday, April 1, 2023
SCIENMAG: Latest Science and Health News
No Result
View All Result
  • Login
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
No Result
View All Result
Scienmag - Latest science news from science magazine
No Result
View All Result
Home SCIENCE NEWS Mathematics

Is brain learning weaker than artificial Intelligence?

January 30, 2023
in Mathematics
0
Share on FacebookShare on Twitter

Traditionally, artificial intelligence stems from human brain dynamics. However, brain learning is restricted in a number of significant aspects compared to deep learning (DL).  First, efficient DL wiring structures (architectures) consist of many tens of feedforward (consecutive) layers, whereas brain dynamics consist of only a few feedforward layers. Second, DL architectures typically consist of many consecutive filter layers, which are essential to identify one of the input classes. If the input is a car, for example, the first filter identifies wheels, the second one identifies doors, the third one lights and after many additional filters it becomes clear that the input object is, indeed, a car. Conversely, brain dynamics contain just a single filter located close to the retina. The last necessary component is the mathematical complex DL training procedure, which is evidently far beyond biological realization.

Is brain learning weaker than artificial intelligence?

Credit: Prof. Ido Kanter, Bar-Ilan University

Traditionally, artificial intelligence stems from human brain dynamics. However, brain learning is restricted in a number of significant aspects compared to deep learning (DL).  First, efficient DL wiring structures (architectures) consist of many tens of feedforward (consecutive) layers, whereas brain dynamics consist of only a few feedforward layers. Second, DL architectures typically consist of many consecutive filter layers, which are essential to identify one of the input classes. If the input is a car, for example, the first filter identifies wheels, the second one identifies doors, the third one lights and after many additional filters it becomes clear that the input object is, indeed, a car. Conversely, brain dynamics contain just a single filter located close to the retina. The last necessary component is the mathematical complex DL training procedure, which is evidently far beyond biological realization.

Can the brain, with its limited realization of precise mathematical operations, compete with advanced artificial intelligence systems implemented on fast and parallel computers? From our daily experience we know that for many tasks the answer is yes! Why is this and, given this affirmative answer, can one build a new type of efficient artificial intelligence inspired by the brain? In an article published today in Scientific Reports, researchers from Bar-Ilan University in Israel solve this puzzle.

“We’ve shown that efficient learning on an artificial tree architecture, where each weight has a single route to an output unit, can achieve better classification success rates than previously achieved by DL architectures consisting of more layers and filters. This finding paves the way for efficient, biologically-inspired new AI hardware and algorithms,” said Prof. Ido Kanter, of Bar-Ilan’s Department of Physics and Gonda (Goldschmied) Multidisciplinary Brain Research Center, who led the research.

“Highly pruned tree architectures represent a step toward a plausible biological realization of efficient dendritic tree learning by a single or several neurons, with reduced complexity and energy consumption, and biological realization of backpropagation mechanism, which is currently the central technique in AI,” added Yuval Meir, a PhD student and contributor to this work.

Efficient dendritic tree learning is based on previous research by Kanter and his experimental research team — and conducted by Dr. Roni Vardi — indicating evidence for sub-dendritic adaptation using neuronal cultures, together with other anisotropic properties of neurons, like different spike waveforms, refractory periods and maximal transmission rates.

The efficient implementation of highly pruned tree training requires a new type of hardware that differs from emerging GPUs which are better fitted to the current DL strategy. The emergence of a new hardware is required to efficiently imitate brain dynamics. 

A video on dendritic learning: https://vimeo.com/702894966

 



Journal

Scientific Reports

DOI

10.1038/s41598-023-27986-6

Article Title

Learning on tree architectures outperforms a convolutional feedforward network

Article Publication Date

30-Jan-2023

Tags: ArtificialbrainIntelligencelearningweaker
Share27Tweet17Share5ShareSendShare
  • Thrushes

    A final present from birds killed in window collisions: poop that reveals their microbiomes

    81 shares
    Share 32 Tweet 20
  • Why are forests turning brown in summer?

    66 shares
    Share 26 Tweet 17
  • Professor Yasmine Belkaid appointed Institut Pasteur President

    66 shares
    Share 26 Tweet 17
  • Conversion to Open Access using equitable new model sees upsurge in usage of expert scientific knowledge

    68 shares
    Share 27 Tweet 17
  • New, exhaustive study probes hidden history of horses in the American West

    65 shares
    Share 26 Tweet 16
  • Null results research now published by major behavioral medicine journal

    651 shares
    Share 260 Tweet 163
ADVERTISEMENT

About us

We bring you the latest science news from best research centers and universities around the world. Check our website.

Latest NEWS

A final present from birds killed in window collisions: poop that reveals their microbiomes

Null results research now published by major behavioral medicine journal

The “Stonehenge calendar” shown to be a modern construct

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 205 other subscribers

© 2023 Scienmag- Science Magazine: Latest Science News.

No Result
View All Result
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US

© 2023 Scienmag- Science Magazine: Latest Science News.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In