Wednesday, July 6, 2022
SCIENMAG: Latest Science and Health News
No Result
View All Result
  • Login
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
No Result
View All Result
Scienmag - Latest science news from science magazine
No Result
View All Result
Home SCIENCE NEWS Space & Planetary Science

How to build an ‘explainable AI’ framework to speed up the innovation process

May 17, 2022
in Space & Planetary Science
0
Share on FacebookShare on Twitter

More than a century has passed since Thomas Edison developed the first electric light bulb, yet Edison’s hallmark approach of ‘trial and error’ to reach his discovery still remains a large part of today’s inventions. Now, a team of engineers at the University of Missouri is embodying the age-old adage of “work smarter, not harder” by using artificial intelligence (AI).

Derek T. Anderson and Matt Maschmann

Credit: University of Missouri

More than a century has passed since Thomas Edison developed the first electric light bulb, yet Edison’s hallmark approach of ‘trial and error’ to reach his discovery still remains a large part of today’s inventions. Now, a team of engineers at the University of Missouri is embodying the age-old adage of “work smarter, not harder” by using artificial intelligence (AI).

Supported by a two-year, $4.875 million grant from the U.S. Army Engineer Research and Development Center (ERDC), the team from the MU College of Engineering, including Derek T. Anderson and Matt Maschmann, are developing a theoretical framework around “explainable AI” to describe how the next-generation of AI can be integrated into the innovation process for designing new and existing materials — while also securing the trust of humans along the way.

Maschmann, an associate professor of mechanical and aerospace engineering, knows this process well. For example, he’s been working with carbon nanotubes since 2003, yet Maschmann said their full potential as an engineering material is far from being realized. The same, he said, can be true for many material systems. Therefore, one of the MU team’s goals is finding a way to accelerate the discovery process by helping make better quality materials in a shorter period of time.

To do this, the team is starting with how to integrate AI and machine learning into the process, said Maschmann, whose passion for developing materials began in the early 2000s during graduate school.

“One of the more pressing challenges in the development of new materials, or optimization of existing materials, is the time required by the processing and characterization steps,” Maschmann said. “Making discoveries takes quite a bit of time and money. For instance, each step of a process may take a day or longer to accomplish. Therefore, in a traditional laboratory environment, scientists will repeat a process multiple times in an attempt to obtain a specific structure or property for a material guided by intuition and previous knowledge. However, if we can introduce machine learning algorithms and AI into the process, it could drastically reduce the time needed to obtain material properties of interest. My hope is this project will greatly increase the rate of discovery for developing materials while also increasing our fundamental understanding of these processes.”  

While Maschmann focuses on the integration of AI and machine learning into materials processing, Anderson, an associate professor of electrical engineering and computer science, is working alongside him to help make AI more intelligent by determining how to better integrate human knowledge into the artificial world. For instance, Anderson said while material scientists, chemists and physicists have vast knowledge about the physical world, most AI and machine learning do not yet share that same level of intelligence.

“Therefore, we’re looking at how do we design the next-generation of AI and machine learning to take advantage of the existing knowledge that people have,” Anderson said. “Then, we want to use that knowledge to intelligently grow AI to be able to design smarter materials. While our efforts are focused on the ‘explainability’ side, and helping scientists and domain experts understand how these processes work, we hope to make AI smarter for everyone’s benefit in the process.”



Tags: buildExplainableframeworkinnovationprocessspeed
Share25Tweet16Share4ShareSendShare
  • Neurovascular injury from SARS-CoV-2

    Small NIH study reveals how immune response triggered by COVID-19 may damage the brain

    71 shares
    Share 28 Tweet 18
  • Scientists discover cancer trigger that could spur targeted drug therapies

    68 shares
    Share 27 Tweet 17
  • COVID-19 fattens up our body’s cells to fuel its viral takeover

    98 shares
    Share 39 Tweet 25
  • Researchers uncover life’s power generators in the Earth’s oldest groundwaters

    67 shares
    Share 27 Tweet 17
  • Study shows convalescent plasma doesn’t benefit severely ill patients hospitalized with COVID-19

    65 shares
    Share 26 Tweet 16
  • Do early therapies help very young children with or at high likelihood for autism?

    82 shares
    Share 33 Tweet 21
ADVERTISEMENT

About us

We bring you the latest science news from best research centers and universities around the world. Check our website.

Latest NEWS

COVID-19 fattens up our body’s cells to fuel its viral takeover

nTIDE May 2022 COVID Update: Uncertainty about inflation tempers good news for people with disabilities

The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 190 other subscribers

© 2022 Scienmag- Science Magazine: Latest Science News.

No Result
View All Result
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US

© 2022 Scienmag- Science Magazine: Latest Science News.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....