Thursday, March 23, 2023
SCIENMAG: Latest Science and Health News
No Result
View All Result
  • Login
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
No Result
View All Result
Scienmag - Latest science news from science magazine
No Result
View All Result
Home SCIENCE NEWS Technology and Engineering

Filling in the blanks

July 31, 2019
in Technology and Engineering
0
Share on FacebookShare on Twitter

Deep learning may help the Army make sense of weak, corrupted signals

IMAGE

Credit: (Courtesy Photo)

Scientists at the U.S. Army’s corporate research laboratory are developing a new algorithm that could improve image and audio identification for intelligence gathering on the battlefield.

U.S. Army Combat Capabilities Development Command Army Research Laboratory scientist Dr. Michael S. Lee and co-workers are developing a deep-learning algorithm called a shortcut autoencoder that can restore single audio clips and images corrupted by various types of random noise.

What sets their work apart from previous studies is that they have improved applicability to 1-D signals (e.g., human speech), and are testing against stronger noise sources than usually considered, i.e., noise/signal ratios beyond 1.0.

“Deep learning is well known for being able to accurately detect objects in images, but it is also capable of synthesizing realistic-looking data, such as observed in the recently popular FaceApp,” Lee said. “In our work, we use deep learning to reconstruct an image based on limited input information, for example, with only one percent of the pixel channels retained.”

Lee said his team’s model is trained with a lot of data of what other real pictures look like, and a variant of their image model can be used to reconstruct human speech from noisy audio signals even when the noise is much louder than the signal.

According to Lee, target Army applications are numerous, including eavesdropping, demodulating communications in the presence of strong jammers and perception of objects in image/video that are obscured intentionally, by darkness (low-light) or by weather events such as fog and rain.

“In the short run, this technology could provide a ‘Zoom/Enhance’ function for intelligence analysts,” Lee said. “In the long run, this type of technology may be seamlessly integrated into a camera’s hardware for improved image quality under various scenarios such as low-light and fog.”

In addition to Army applications, Lee noted that the commercial sector could benefit from this technology as well.

“In low-bandwidth environments, such as areas far away from cell towers, algorithms like ours could provide clearer phone calls,” Lee said. “Self-driving cars may benefit from this technology in extreme weather scenarios like rain and fog to infer what objects are ahead. Commercial video cameras will be able to operate in lower light conditions with higher frame rates and/or lower exposure times.”

This work addresses challenges within the Network Command, Control, Communication and Intelligence Cross-Functional Team.

“Part of CCDC ARL’s mission is to explore the realm of what is possible,” Lee said. “Here, we show that beyond detection and classification, machine learning can be used for the elucidation of weak and/or noisy signals and images.”

Moving into the future, Lee and his colleagues would like to explore how this method will work on data types beyond human speech and optical images, such as physical environment sensor data and wireless communication.

###

Media Contact
Jenna Brady
[email protected]

Original Source

https://www.arl.army.mil/www/default.cfm?article=3483

Tags: Computer ScienceResearch/DevelopmentTechnology/Engineering/Computer Science
Share25Tweet16Share4ShareSendShare
  • Bacterial communities in the penile urethra

    Healthy men who have vaginal sex have a distinct urethral microbiome

    165 shares
    Share 66 Tweet 41
  • BetaLife and A*STAR Collaborate to develop next generation cell-based therapy for diabetes treatment

    70 shares
    Share 28 Tweet 18
  • Genetic causes of three previously unexplained rare diseases identified

    71 shares
    Share 28 Tweet 18
  • Promoting healthy longevity should start young: pregnancy complications lift women’s risk of mortality in the next 50 years

    71 shares
    Share 28 Tweet 18
  • Robot caterpillar demonstrates new approach to locomotion for soft robotics

    66 shares
    Share 26 Tweet 17
  • Can artificial intelligence predict spatiotemporal distribution of dengue fever outbreaks with remote sensing data? New study finds answers

    65 shares
    Share 26 Tweet 16
ADVERTISEMENT

About us

We bring you the latest science news from best research centers and universities around the world. Check our website.

Latest NEWS

Healthy men who have vaginal sex have a distinct urethral microbiome

Spotted lanternfly spreads by hitching a ride with humans

Cyprus’s copper deposits created one of the most important trade hubs in the Bronze Age

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 205 other subscribers

© 2023 Scienmag- Science Magazine: Latest Science News.

No Result
View All Result
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US

© 2023 Scienmag- Science Magazine: Latest Science News.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In