Thursday, February 2, 2023
SCIENMAG: Latest Science and Health News
No Result
View All Result
  • Login
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
No Result
View All Result
Scienmag - Latest science news from science magazine
No Result
View All Result
Home SCIENCE NEWS Chemistry AND Physics

Computer searches telescope data for evidence of distant planets

March 30, 2018
in Chemistry AND Physics
0
Share on FacebookShare on Twitter
IMAGE

Credit: NASA/JPL-Caltech

CAMBRIDGE, MASS.–As part of an effort to identify distant planets hospitable to life, NASA has established a crowdsourcing project in which volunteers search telescopic images for evidence of debris disks around stars, which are good indicators of exoplanets.

Using the results of that project, researchers at MIT have now trained a machine-learning system to search for debris disks itself. The scale of the search demands automation: There are nearly 750 million possible light sources in the data accumulated through NASA's Wide-Field Infrared Survey Explorer (WISE) mission alone.

In tests, the machine-learning system agreed with human identifications of debris disks 97 percent of the time. The researchers also trained their system to rate debris disks according to their likelihood of containing detectable exoplanets. In a paper describing the new work in the journal Astronomy and Computing, the MIT researchers report that their system identified 367 previously unexamined celestial objects as particularly promising candidates for further study.

The work represents an unusual approach to machine learning, which has been championed by one of the paper's coauthors, Victor Pankratius, a principal research scientist at MIT's Haystack Observatory. Typically, a machine-learning system will comb through a wealth of training data, looking for consistent correlations between features of the data and some label applied by a human analyst – in this case, stars circled by debris disks.

But Pankratius argues that in the sciences, machine-learning systems would be more useful if they explicitly incorporated a little bit of scientific understanding, to help guide their searches for correlations or identify deviations from the norm that could be of scientific interest.

"The main vision is to go beyond what A.I. is focusing on today," Pankratius says. "Today, we're collecting data, and we're trying to find features in the data. You end up with billions and billions of features. So what are you doing with them? What you want to know as a scientist is not that the computer tells you that certain pixels are certain features. You want to know 'Oh, this is a physically relevant thing, and here are the physics parameters of the thing.'"

Classroom conception

The new paper grew out of an MIT seminar that Pankratius co-taught with Sara Seager, the Class of 1941 Professor of Earth, Atmospheric, and Planetary Sciences, who is well-known for her exoplanet research. The seminar, Astroinformatics for Exoplanets, introduced students to data science techniques that could be useful for interpreting the flood of data generated by new astronomical instruments. After mastering the techniques, the students were asked to apply them to outstanding astronomical questions.

For her final project, Tam Nguyen, a graduate student in aeronautics and astronautics, chose the problem of training a machine-learning system to identify debris disks, and the new paper is an outgrowth of that work. Nguyen is first author on the paper, and she's joined by Seager, Pankratius, and Laura Eckman, an undergraduate majoring in electrical engineering and computer science.

From the NASA crowdsourcing project, the researchers had the celestial coordinates of the light sources that human volunteers had identified as featuring debris disks. The disks are recognizable as ellipses of light with slightly brighter ellipses at their centers. The researchers also used the raw astronomical data generated by the WISE mission.

To prepare the data for the machine-learning system, Nguyen carved it up into small chunks, then used standard signal-processing techniques to filter out artifacts caused by the imaging instruments or by ambient light. Next, she identified those chunks with light sources at their centers, and used existing image-segmentation algorithms to remove any additional sources of light. These types of procedures are typical in any computer-vision machine-learning project.

Coded intuitions

But Nguyen used basic principles of physics to prune the data further. For one thing, she looked at the variation in the intensity of the light emitted by the light sources across four different frequency bands. She also used standard metrics to evaluate the position, symmetry, and scale of the light sources, establishing thresholds for inclusion in her data set.

In addition to the tagged debris disks from NASA's crowdsourcing project, the researchers also had a short list of stars that astronomers had identified as probably hosting exoplanets. From that information, their system also inferred characteristics of debris disks that were correlated with the presence of exoplanets, to select the 367 candidates for further study.

###

Media Contact

Sara Remus
[email protected]
617-253-2709
@MIT

http://web.mit.edu/newsoffice

Original Source

http://news.mit.edu/2018/computer-searches-telescope-data-evidence-distant-planets-0330

Share25Tweet16Share4ShareSendShare
  • cotton microfiber

    Looking beyond microplastics, Oregon State researchers find that cotton and synthetic microfibers impact behavior and growth of aquatic organisms

    69 shares
    Share 28 Tweet 17
  • Seawater split to produce green hydrogen

    69 shares
    Share 28 Tweet 17
  • First solid scientific evidence that Vikings brought animals to Britain

    66 shares
    Share 26 Tweet 17
  • Voice-activated system for hands-free, safer DNA handling

    65 shares
    Share 26 Tweet 16
  • Feather mite species related to the Laysan albatross discovered in Japan

    65 shares
    Share 26 Tweet 16
  • Dogs’ average age at cancer diagnosis is associated with size, sex, breed

    66 shares
    Share 26 Tweet 17
ADVERTISEMENT

About us

We bring you the latest science news from best research centers and universities around the world. Check our website.

Latest NEWS

New study shows snacking on mixed tree nuts may impact cardiovascular risk factors and increase serotonin

Null results research now published by major behavioral medicine journal

Seawater split to produce green hydrogen

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 205 other subscribers

© 2022 Scienmag- Science Magazine: Latest Science News.

No Result
View All Result
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US

© 2022 Scienmag- Science Magazine: Latest Science News.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In