Friday, March 24, 2023
SCIENMAG: Latest Science and Health News
No Result
View All Result
  • Login
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US
No Result
View All Result
Scienmag - Latest science news from science magazine
No Result
View All Result
Home SCIENCE NEWS Technology and Engineering

AI helps to fight against lung cancer

July 3, 2017
in Technology and Engineering
0
Share on FacebookShare on Twitter
IMAGE

Credit: ©Science China Press

Currently, lung cancer has become one of the most deadly cancers. In contrast to the steady increase in survival for most cancers, advances have been slow for lung cancer. Commonly, the five-year survival rate for lung cancer patients is merely 16%, which will rise to 52% if lung cancer is diagnosed at early stages. However, it will decrease to below 4% if cancer spread occurs. Therefore, it is of crucial importance to detect lung cancer at early stages for prolonging patient's life. Liu et al. from Beihang University have proposed one computer aided detection method based on artificial neural network for lung cancer detection, which will soon appear in the 7th issue of SCIENCE CHINA Information Sciences in 2017.

In clinical practice, Computer Tomography (CT) can capture fine-grained details for both lung nodules and surround structures, acting as the golden standard for diagnosis. However, the high sensitivity of CT imaging also leads to huge data and complex ambiguities, which makes it hard for radiologists for distinguishing pathological structures from healthy. In recent years, Computer Aided Detection (CADe) system has developed rapidly and shown great potential in diagnosis assistance. Detection for lung nodules is an obvious guidance for lung cancer diagnosis and treatment. However, it is hard to assess lung nodules due to various nodule appearances, minor differences between nodule and healthy structures, as well as the influence by vessel and other tissues around nodules.

Inspired by the prior works, this article presents an artificial neural network based approach to the extraction of lung nodules from chest CTs. The pipeline and the ANN architecture can be found in Fig.1 and Fig.2, separately. Different from classical methods, we focus on the inner structures of nodule voxels and apply ANN to generalize these characteristics. We are working in 3D space consisting of only voxels instead of processing slice by slice in CT volume. Our method can be easily integrated into existing CADe systems and rapidly accommodate and process new data streams with few human interactions. Meanwhile, we propose a novel voting method based on geometrical and statistical features to better extract initial candidate regions while suppressing ambiguous structures. Finally, we have proposed a nodule detection approach with multiple trained ANNs based on 3D massive sampling of candidate voxels instead of user-specified features with a goal to reduce various false positives.

###

Please refer to Liu X, Hou F, Qin H, et al. A CADe system for nodule detection in thoracic CT images based on artificial neural network[J]. Science China Information Sciences, 2017, 60(7):072106. for details, which can be found under http://engine.scichina.com/doi/10.1007/s11432-016-9008-0 on the official website of SCIENCE CHINA Information Sciences.

Media Contact

Fei Hou
[email protected]

http://zh.scichina.com/english/

Related Journal Article

http://dx.doi.org/10.1007/s11432-016-9008-0

Share26Tweet16Share4ShareSendShare
  • Bacterial communities in the penile urethra

    Healthy men who have vaginal sex have a distinct urethral microbiome

    247 shares
    Share 99 Tweet 62
  • The “Stonehenge calendar” shown to be a modern construct

    73 shares
    Share 29 Tweet 18
  • Researchers discover a way to fight the aging process and cancer development

    72 shares
    Share 29 Tweet 18
  • Can artificial intelligence predict spatiotemporal distribution of dengue fever outbreaks with remote sensing data? New study finds answers

    76 shares
    Share 30 Tweet 19
  • Promoting healthy longevity should start young: pregnancy complications lift women’s risk of mortality in the next 50 years

    78 shares
    Share 31 Tweet 20
  • Astrophysicists show how to “weigh” galaxy clusters with artificial intelligence

    67 shares
    Share 27 Tweet 17
ADVERTISEMENT

About us

We bring you the latest science news from best research centers and universities around the world. Check our website.

Latest NEWS

Healthy men who have vaginal sex have a distinct urethral microbiome

Spotted lanternfly spreads by hitching a ride with humans

Cyprus’s copper deposits created one of the most important trade hubs in the Bronze Age

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 205 other subscribers

© 2023 Scienmag- Science Magazine: Latest Science News.

No Result
View All Result
  • HOME PAGE
  • BIOLOGY
  • CHEMISTRY AND PHYSICS
  • MEDICINE
    • Cancer
    • Infectious Emerging Diseases
  • SPACE
  • TECHNOLOGY
  • CONTACT US

© 2023 Scienmag- Science Magazine: Latest Science News.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In